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The need Forecasting is an important part of planning and future growth. Many of an organization’s 
decisions are based on the prediction of future unknown events. This paper describes some statistical 
methods that can be used for time series forecasting. 
 
 
 
 
 
 
 
 
 
 
   

 
 

 
 

 
 
 
 

 

 

INTRODUCTION 
 

Forecasting means to calculate or predict some future events 
based on the study of past and present data. In business, 
industry and government, policymakers need the future 
behaviour of many events before they make decisions. Their 
decisions depend on the forecast and they expect these forecasts 
to be accurate. A forecast system is needed to make such 
predictions.  
 

Following are some areas those require forecasting 
 

 Marketing managers: They use sales forecasts to 
determine optimal sales force allocations, set sales goals, 
and plan promotions and advertising.  

 Production planners: They need forecasts in order to: 
schedule production activities, order materials, establish 
inventory levels and plan shipments. 

 The bank: Banks have to forecast too. Demands of various 
loans and deposits Money and credit conditions so that it 
can determine the cost of money it lends. 

 Public administrators: They also must make forecasts for 
budgeting purposes. 

 Universities: These forecast student enrolments, cost of 
operations, and, in many cases, the funds to be provided by 
tuition and by government appropriations. 

 The personnel department:  It requires a number of 
forecasts in planning for human resources. Trends that 
affect such variables as labor turnover, retirement age, 
absenteeism, and tardiness need to be forecast for planning 
and decision making.  
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Forecasting methods generally assume that the same underlying 
causal relationship that existed in the past will continue to 
prevail in the future. In other words, most of our techniques are 
based on historical data.  
 
Forecasting methods can be broadly classified into two 
categories: quantitative and qualitative. Qualitative forecast 
methods are based on human judgement, opinions and non 
mathematical.  
 
These methods are useful when historical data either are not 
available or are scarce. These methods are simple and easy to 
use but usually they give little or no information about the 
accuracy of the forecast. On the other side quantitative methods 
are based on mathematical or statistical models. These methods 
are used when the historical data are available. Once the 
underlying model has been chosen, the corresponding forecasts 
are determined automatically. These quantitative methods can 
be further classified as deterministic or statistical. In 
deterministic models the relationships between the variable of 
interest, �, and predictor variables ��, ��, …�� is determined 
exactly; 
 

� = ����	,��, …��, ��, ��, … ��� 
 

But stochastic models involve some randomness or uncertainty 
i.e., of the form 
 

� = ����	,��, …��, ��, ��, … ��� + ����� 
 

Where noise or error component is a realization from a certain 
probability distribution. That is why these models are also 
called statistical or probabilistic methods. In this paper, only 
quantitative forecast methods have been discussed. 
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A forecast system consists of some steps which are 
explained below 
 

 Forecaster must first identify the problem for which the 
forecast is to be made. This is the most difficult aspect 
of the forecaster’s task. A forecaster has a great deal of 
work to do to properly define the forecasting problem, 
before any answer can be provided. 

 Next, it is necessary to collect historical data of the 
items of interest. The historical data is used to construct 
a model which can be used for forecasting. 

  In the next step, collected data is analysed to inspect 
what do the data tell us? We plot the graph of the data 
for visual inspection. Then we compute some simple 
descriptive statistics e.g. mean, standard deviation, 
correlation etc.  We also use decomposition analysis to 
check the relative strengths of trend, seasonality, cycles 
and to indentify unusual data points. Such analysis will 
help us to suggest a class of methods for forecasting.   

 The next step involves choosing and fitting several 
forecasting methods. Each method is based on a set of 
assumptions and usually involves one or more 
parameters which must be fitted using the known 
historical data. The adequacy of the fitted model must 
be checked. If the model is unsatisfactory, it has to be 
respecified. This process must be repeated until a 
satisfactory model is found. 

 Once a model has been selected and its parameters 
estimated appropriately, the model is to be used to make 
forecasts. The stability of the forecast model can be 
assessed by checking the forecasts against the exact 
observations. Forecast errors can be calculated, and 
possible changes in the model can be detected. 

 
The rest of the paper is structured as follows; the next section 
describes various statistical models for predictions such as 
regression analysis, moving average methods and some 
advanced methods such as ARIMA methods and neural 
network. The last section concludes the papers. 

 
Statistical methods for Prediction 
 

Regression Analysis 
 
Regression analysis is widely used for prediction. It is 
concerned with modeling the relationships among variables. It 
quantifies how a dependent variable is related to a set of 
independent (predicted) variables. 
 
The regression model, in general, can be written as  
 
�� = �(��; 	�) + ��														(1) 
 
Where �(��; 	�) is a mathematical function of the � 
independent variables �� = (���, ���, ���		 … ���)′ and unknown 
parameters	� = (��, ��, … ��)′. The model (1) is probabilistic, 
since the error term ∈� is a random variable. It is assumed that  
 

 Its mean, �(∈�) = 0   and its variance �(∈�) = ��, are 
constant and independent from  �. 

 ���(∈�, ∈���) = �(∈�, ∈���) = 0	���	���	� ≠ 0 that is, 
the errors ∈� are uncorrelated. Also errors come from a 
normal distribution. 

There are two types of regression models: (1) Linear models (2) 
Non linear models.  Models those are linear in the parameters 
as well as independent variables, are linear models and can 
always be written as  
 

�� = �� + ����� + ����� + + ����� + �� 

 
The set of the � independent variables ��, ��, … , �� can be 

either original predictor variables or functions. Examples of 
linear models are: 
 
(i) �� = 	�� + �� (Constant mean model) 
(ii) �� = 	�� + ���� + �� (Simple linear regression model) 
(iii) �� = 	�� + ����� + ����� + ��(Linear model with two 
independent variables) 
 
Non linear models are those which are non linear in parameters 
and independent variables. Examples are: 
 
(i) �� = 	��exp	(����) + �� (Exponential growth model) 
(ii) �� = 	�� + ���� + ����

� + ��(Quadratic model) 
 
The problem of estimating parameters � from the given 

historical data is to choose parameter estimates �� = (���, … ���)′ 

such that the fitted function �(��; 	��) is close to the 
observations. The parameter estimates that minimize the sum of 
squared deviations 
 

�(�) = �[�� �(��; �)]
�

�

���

 

 

are called the least squares estimates and denoted  
 
Averaging Methods 
 
Averaging methods are suitable for the stationary time series 
data where the series is in equilibrium around a constant value 
(the underlying mean) with a constant variance over time. The 
various averaging methods are discussed below: 
 
Mean 
 
It uses the average of all the historical data as the forecast 
 

���� =
1

�
���

�

���

 

 
This method is appropriate when there is no noticeable trend or 
seasonality. When the new data becomes available, the forecast 
for time n+2 is the new mean including the previously obtained 
data plus this new observation 
 

 

���� =
1

� + 1
���

���

���

 

 

Moving Averages (MA) 

 
The moving average provides a simple method for smoothing 
the past values to estimate trend-cycle component. Taking an 
average of the points near observation provide a reasonable 
estimate of the trend-cycle at that observation.  
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The average eliminates some randomness in the data. The 
moving average for time period t is the mean of the “k” most 
recent observations. The smaller the number k, the more weight 
is given to recent periods. The greater the number k, the less 
weight is given to more recent periods. The constant number k 
is specified at the outset. A large k is desirable when there are 
wide, infrequent fluctuations in the series. A small k is most 
desirable when there are sudden shifts in the level of series. For 
quarterly data, a four-quarter moving average, MA (4), 
eliminates or averages out seasonal effects. For monthly data, a 
12-month moving average, MA (12), eliminate or averages out 
seasonal effect. Equal weights are assigned to each observation 
used in the average. Each new data point is included in the 
average as it becomes available, and the oldest data point is 
discarded. 
 
A moving average of order k, MA (k) is the value of k 
consecutive observations. 
 

���� =
(�� + ���� + + ������)

�
 

 

here k is the number of terms in the moving average. The 
moving average model does not handle seasonality very well 
although it can do better than the total mean. 
 
Exponential smoothing methods 
 
This method provides an exponentially weighted moving 
average of all previously observed values. Here the aim is to 
estimate the current level and use it as a forecast of future 
value. The formula for exponential smoothing is  
 
���� = ��� + (1 �)�� 
     
Here �	is a smoothing constant. 
 
The forecast ���� is based on weighting the most recent 
observation ��	with a weight α and weighting the most recent 
forecast �� with a weight of 1 �. The value of smoothing 
constant α must be between 0 and 1. If stable predictions with 
smoothed random variation is desired then a small value of α is 
desired. If a rapid response to a real change in the pattern of 
observations is desired, a large value of α is appropriate. To 
estimate α, Forecasts are computed for α equal to .1, .2, .3, …, 
.9 and the sum of squared forecast error is computed for each. 
The value of α with the smallest RMSE is chosen for use in 
producing the future forecasts. Holt’s two parameter 
exponential smoothing method is an extension of simple 
exponential smoothing. It adds a growth factor (or trend factor) 
to the smoothing equation as a way of adjusting for the trend. 
Three equations and two smoothing constants are used in the 
model. The exponentially smoothed series or current level 
estimate is 
 
�� = ��� + (1 �)(���� + ����) 
 
The trend estimate is 
 
�� = �(�� ����) + (1 �)���� 
 
Forecast m periods into the future is 
 

���� = �� + ��� 
 
The weight α and β can be selected subjectively or by 
minimizing a measure of forecast error such as RMSE. Large 
weights result in more rapid changes in the component and 
small weights result in less rapid changes. Winter’s exponential 
smoothing model is the second extension of the basic 
Exponential smoothing model. It is used for data that exhibit 
both trend and seasonality. It is a three parameter model that is 
an extension of Holt’s method. An additional equation adjusts 
the model for the seasonal component.  
 
Autoregressive Integrated Moving Average (ARIMA) 
 
ARIMA model, also known as Box-Jenkins models, is widely 
used in time series forecasting because of its flexibility in 
representing different time series. The ARIMA model is usually 
denoted as ARIMA (p, q, d). Here p is the number of 
autoregressive orders that specify which previous values from 
the series are used to predict current values. The order of 
differencing, d is applied to the series before estimating model. 
The series with trends are nonstationarity and ARIMA 
modeling assumes stationarity. So, differencing is necessary 
when trends are present and is used to remove their effect. The 
number of moving average orders, q, specify how deviations 
from the series mean for previous values are used to predict 
current values. The ARIMA model assumes that the future 
values of a time series have functional relationship with past 
and current observations and white noise. So the underlying 
process that generates the time series has the following form 

 
�� = � + ������ + ������ + + ������ + �� ������

������ … ������  
 

i.e. the actual value ��  depends on its p previous values and q 
previous random error terms ��. In the ARIMA model ��(� =
1,2, … �) and ��(� = 1,2,… , �) are called autoregressive and 

moving average operators respectively. Our main task of the 
ARIMA model building is to determine the appropriate model 
order (p, q, d). There are three steps to build a suitable ARIMA 
model. 
 
Model identification: First we identify the stationarity of the 
data by plotting the graph of the data. Then we estimate the 
order of p and q.  
 
Parameter estimation: Here we estimate the parameters by 
imposing some conditions.  
 
Diagnostic checking: After the estimation of the parameters 
the Ljung-Box Q statistic is used to check the overall adequacy 
of the fitted model 

 
Neural network model 
 
Neural networks are a class of flexible nonlinear models that 
can discover patterns adaptively from the data. They have been 
widely used as a promising method for the time series 
forecasting. They can be an important candidate for seasonal 
and trend time series forecasting. Being a flexible modeling 
tool, neural networks can model any type of relationship in the 
data with high accuracy. With neural networks, no specific 
assumptions need to be made about the model and the 
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underlying relationship is determined solely through data 
mining. This data driven approach is one of the most important 
advantages of neural networks in solving many complex real 
world forecasting problems. Although neural networks are 
inherently nonlinear models, they are capable of modeling 
linear processes as well. As neural networks are universal 
function approximators, it is natural to use them to directly 
model seasonal and trend variations. Although many types of 
neural network models have been proposed, the most popular 
model for time series forecasting is the feedforward network 
model. Here the inputs nodes are the previous lagged 
observations while the output provides the forecast for the 
future value. Hidden nodes with appropriate nonlinear transfer 
functions are used to process the information received by the 
input nodes. The model can be written as  
 

�� = �� +����(�������� + ���) + ��

�

���

�

���

 

 
Where m is the number of input nodes, n is the number of 
hidden nodes, f is sigmoid transfer function. {��, � = 0,1, … �} 

is a vectors of weights from the hidden to output nodes and 
{���; � = 0,1, …�; � = 1,2, …�} are weights from the input to 

hidden nodes. Here �� and ��� are the weights of arcs leading 

from the bias terms which have values always equal to 1. In the 
time series forecasting context, neural networks can be 
perceived as equivalent to nonlinear autoregressive models. 
Lags of the time series, potentially together with lagged 
observations of explanatory variables, are used as inputs to the 
network. During training pairs of input vectors and targets are 
presented to the network. The network output is compared to 
the target and the resulting error is used to update the network 
weights. Neural network   training is a complex nonlinear 
optimisation problem, and the network can often get trapped in 
local minima of the error surface. In order to avoid poor quality 
results, training should be initialised several times with 
different random starting weights and biases to explore the 
error surface more fully. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion  
 

This short paper shows the various statistical techniques for 
time series forecasting. Some of the techniques are quite simple 
and rather inexpensive to develop and use. Others are 
extremely complex, require significant amounts of time to 
develop, and may be quite expensive. Some are best suited for 
short-term projections, others for intermediate or long-term 
forecasts.  There are some techniques to select forecasting 
models such as (a) Is forecasting for short-run or long-run 
purposes? (b) How much data is available and is data stationary 
or non stationary? (c) How much accuracy is desired? (d)  What 
is the cost associated with developing the forecasting model, 
compared with potential gains resulting from its use? 
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