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Kirişci M., Simsek N., Akyigit M.(21) have established fixed point result for neutrosophic Banach 
contraction. The aim of this paper is to put the notion of Neutrosophic Expansion on Neutrosophic 
Metric Space, and to prove a fixed point theorem for a Neutrosophic Expansion mapping. 
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INTRODUCTION 
 
The concept of Fuzzy Sets introduced by Zadeh (1) has attracted all the scientific fields since its starting. It is seen that this concept 
remained failed for real-life situations, to provide enough solution to some problems in time.Atanassov (2) put the idea of 
Intuitionistic fuzzy sets for such cases. Neutrosophic set (NS) is a new version of the idea of the classical set which is defined by 
Smarandache (3). Some of other generalizations are FS (1) interval-valued FS (4), IFS (2), interval-valued IFS (5), the sets 
paraconsistent, dialetheist, paradoxist, and tautological (6), Pythagorean fuzzy sets (7). Combining  the concepts Probabilistic 
metric space and fuzziness, fuzzy metric space (FMS) is introduced in (8). Kaleva and Seikkala (9) have defined the fuzz metric as 
the nearness between two points with respect to a real number  to be a non-negative fuzzy number. In (10) some basic properties of 
FMS studied and the Baire Category Theorem for FMS proved. Further, some properties of metric structure like separability, 
countabilityetc are given and Uniform Limit Theorem is proved in (11). Afterward, FMS has used in the applied sciences such as 
fixed point theory, image and signal processing, medical imaging, decision-making et al. After itroduction of the intuitionistic 
fuzzy set (IFS), it was used in all areas where FS theory was studied. Park (12) defined IF metric space (IFMS), which is a 
generalization of FMSs. Park used George and Veeramani’s (10) idea of applying t-norm and t-conorm to the FMS meanwhile 
defining IFMS and studying its basic features. Fixed point theorem for fuzzy contraction mappings is initiated by Heilpern (13). 
Bose and Sahani (14) extended the Heilpern’s study. Alaca et al. (15) are given fixed point theorems related to intuitionistic fuzzy 
metric spaces(IFMSs). Fixed point results for fuzzy metric spaces and IFMSs are studied by many researchers (16), (17), (18), 
(19), (20). Kirisci et al. (21, 23) defined neutrosophic contractive mapping and gave a fixed point results in complete neutrosophic 
metric spaces. In (22), Mohamad studied fixed point aprroach in intuitionistic fuzzy metric spaces. In this paper, we introduce the 
notion of Neutrosophic Expansion on Neutrosophic Metric Space (NMS) and we prove some fixed point result for Neutrosophic 
Expansion on NMS. 
 
Preliminaries: Triangular norms (t-norms) (TN) were initiated by Menger (27). In the problem of computing the distance between 
two elements in space, Menger offered using probability distributions instead of using numbers of distance. TNs are used to  
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generalize with the probability distribution of triangle inequality in metric space conditions. Triangular conforms (t-conorms) (TC) 
know as dual operations of TNs. TNs and TCs are very significant for fuzzy operations (intersections and unions). 
 
Definition 2.1.Give an operation ⨀:(0,1)×(0,1)→(0,1). If the operation ⨀ is satisfying the following conditions, then it is called 
that the operation ⨀ is continuous TN (CTN): For 𝑠,t,u,∈(0,1),  
 
i) 𝑠⨀1=𝑠,  
ii) If 𝑠 ≤ 𝑢 and 𝑡 ≤ 𝑣, than 𝑠⨀𝑡≤𝑢⨀𝑣,  
iii)⨀ is commutative and associate,  
iv)⨀ is continuous.  
 
Definition 2.2.Give an operation ⊡:(0,1)×(0,1)→(0,1). If the operation ⊡ is satisfying the following conditions, then it is called 
that the operation ⊡ is continuous TC (CTC):  
 
i)⊡0=𝑠,  
ii) If 𝑠≤𝑢 and 𝑡≤𝑣, than 𝑠⊡𝑡≤𝑢⊡𝑣,  
iii)⊡ is commutative and associate,  
 iv) ⊡ is continuous. 
 
Remark 2.3.(23) Take ⨀ and ⊡ are CTN and CTC, respectively. For 𝑠,t,v,∈(0,1),  
 
a. If 𝑠>𝑡, then there are 𝑢, such that 𝑠⨀𝑢≥𝑡 and 𝑠≥𝑡⊡𝑣.  
b. There are 𝑝, such that 𝑡⨀𝑡≥𝑠 and 𝑠≥𝑝⊡𝑝.  
 
Definition 2.4. [28] Take 𝐹 be an arbitrary set,Ω ={〈𝑎,𝐻𝑈(𝑎), 𝑀𝑈(𝑎),𝑆𝑈(𝑎)〉:𝑎∈𝐹} be a NS such that 
Ω:𝐹×𝐹×ℝ+→[0,1]. Let ⨀ and ⊡ show the CTN and CTC, respectively. The four tuple 𝑉=(𝐹, Ω,⨀,⊡) is 
called Multiplicative Neutrosophic Metric Space(MNMS) when the following conditions are satisfied. 
∀𝑎,𝑏,𝑐∈𝐹,  
 
      i)   0 ≤ H(𝑎, b,𝜆) ≤ 1, 0 ≤ 𝑀(𝑎,𝑏,𝜆) ≤ 1, 0 ≤ 𝑆(𝑎,𝑏,𝜆) ≤ 1∀𝜆∈ℝ+,  
     ii)   𝐻(𝑎,𝑏,𝜆)+𝑀(𝑎,𝑏,𝜆)+𝑆(𝑎,𝑏,𝜆) ≤ 3, ( 𝑓𝑜𝑟 𝜆 ∈ ℝ+),  
    iii)   H(𝑎,b,𝜆)  = 1 (𝑓𝑜𝑟 𝜆 > 0) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎 = 𝑏,  
    iv)   H(𝑎,b,𝜆) = 𝐻(𝑏,𝑎,𝜆) (𝑓𝑜𝑟 𝜆 > 0),  
     v)   𝐻(𝑎,𝑏,𝜆) ⨀ 𝐻(𝑏,𝑐,𝜇) ≤ 𝐻(𝑎,𝑐,𝜆 + 𝜇)  (𝑓𝑜𝑟 𝜆, 𝜇 > 0),  
    vi)   H(𝑎,b,.):[0,∞)→[0,1] is continuous,  
   vii)   lim𝜆→∞ H(𝑎,𝑏,𝜆) = 1 ( ∀ 𝜆 > 0),  
  viii)   M(𝑎,b,𝜆) = 0 (𝑓𝑜𝑟 𝜆 > 0) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎 = 𝑏,  
    ix)   M(𝑎,b,𝜆) = 𝑀(𝑏,𝑎,𝜆) (𝑓𝑜𝑟 𝜆 > 0),  
      x)   𝑀(𝑎,𝑏,𝜆) ⊡ 𝑀(𝑏,𝑐,𝜇) ≥ 𝑀(𝑎,𝑐,𝜆 + 𝜇)  (𝑓𝑜𝑟 𝜆,𝜇 > 0)  
     xi)   M(𝑎,b,.):[0,∞)→[0,1] is continuous,  
    xii)   lim𝜆→∞M(𝑎,𝑏,𝜆) = 0 ( ∀ 𝜆 > 0),  
   xiii)   M(𝑎,b,𝜆) = 0 (𝑓𝑜𝑟 𝜆 > 0) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎 = 𝑏 
   xiv)   M(𝑎,b,𝜆) =𝑆(𝑏,𝑎,𝜆) (𝑓𝑜𝑟 𝜆 > 0),   
    xv)   𝑆(𝑎,𝑏,𝜆) ⊡ 𝑆(𝑏,𝑐,𝜇) ≥ 𝑆(𝑎,𝑐,𝜆 + 𝜇)  (𝑓𝑜𝑟 𝜆 ,𝜇 > 0),  
   xvi)   S(𝑎,b,.) :[0,∞)→[0,1] is continuous,  
  xvii)   lim𝜆→∞S(𝑎,𝑏,𝜆) = 0 (∀ 𝜆 > 0)  
 xviii)   If 𝜆 ≤ 0, then 𝐻(𝑎,𝑏,𝜆) = 0,𝑀(𝑎,𝑏,𝜆) = 1, 𝑆(𝑎,𝑏,𝜆) = 1.  
   
 Then Ω =(𝐻,𝑀,𝑆) is called Multiplicative Neutrosophic Metric (MNM) on 𝐹.  
 
Then Ω =(𝐻,𝑀,𝑆) is called Multiplicative Neutrosophic Metric (MNM) on 𝐹.  
 

MAIN RESULTS 
 
Now we define Neutrosophic Expansion on neutrosophic metric space (NMS) and prove fixed point result for it. 
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3.  NEUTROSOPHIC EXPANSION MAPPING: 
 
Definition 3.1. Let 𝑉 be a MNMS. The mapping 𝑓: 𝐹→𝐹 is called neutrosophic expansion (NE) if there exists       𝑘 ∈ (1, ∞) such 
that  

1

𝐻(𝑓(𝑎), 𝑓(𝑏), 𝛾)  
− 1 ≥ 𝑘 ൬

1

𝐻(𝑎, 𝑏, 𝛾)
− 1൰ 

                                                                       
𝑀(𝑓(𝑎), 𝑓(𝑏), 𝜆) ≥ k (𝑀(𝑎, 𝑏, 𝜆)),  
S(𝑓(𝑎), 𝑓(𝑏), 𝜆) ≥ k (S(𝑎, 𝑏, 𝜆)) 
 for each 𝑎, 𝑏∈𝐹 and 𝜆 > 0. 
 
Theorem:Let 𝑉 be a complete NMS with (2) in which a NC sequence is a Cauchy sequence. Let 𝑓: 𝐹→𝐹 is a surjective 
neutrosophic expansion satisfying conditions of Definition 3.1. Then 𝑓 has a unique fixed point in 𝑉. 
 
Proof: Let 𝑎 ∈ 𝑉. 𝑆𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝑤𝑒 𝑐𝑎𝑛 𝑑𝑒𝑓𝑖𝑛𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑎} 𝑏𝑦 𝑎 =  𝑓(𝑎ାଵ ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ. For each𝛾 >0, 

1

𝐻(𝑎, 𝑎ାଵ, 𝛾)
− 1 =

1

𝐻(𝑓(𝑎ାଵ), 𝑓(𝑎ାଶ), 𝛾)
− 1 

      ≥ 𝑘 ൬
1

𝐻(𝑎ାଵ, 𝑎ାଶ, 𝛾)
− 1൰ 

 

      ቀ
ଵ

ு(శభ,శమ,ఊ)
− 1ቁ  ≤  𝛼(

ଵ

ு(,శభ,ఊ)
− 1) 

    ≤ 𝛼(
ଵ

ு(భ, మ,ఊ)
− 1)        

 
In the same way 
 
𝑀(𝑎ାଵ, 𝑎ାଶ, 𝛾) ≤ 𝛼 𝑀(𝑎ଵ, 𝑎ଶ, 𝛾), 
𝑆(𝑎ାଵ, 𝑎ାଶ, 𝛾) ≤ 𝛼 (𝑎ଵ, 𝑎ଶ, 𝛾), 

where 𝛼 =
ଵ


 ≤ 1.  

 
Also we have 

1

𝐻൫𝑎, 𝑎ା, 𝛾൯
− 1  ≤  

1

∗ୀ


𝐻 ቀ𝑎 , 𝑎ାଵ,
ఊ

ଶశభష ቁ
− 1 

 
 

≤∗ୀ


(( 
1

𝐻 ቀ𝑎 , 𝑎ାଵ,
ఊ

ଶశభషቁ
) − 1) 

≤∗ୀ


𝛼 ( 
1

𝐻 ቀ𝑎, 𝑎ଵ,
ఊ

ଶశభషቁ
) − 1 

 
Which tends to 0 as 𝑛 → ∞. So that lim→ஶ 𝐻൫𝑎 , 𝑎ା, 𝛾൯ = 1. In the same way lim→ஶ 𝑀൫𝑎 , 𝑎ା, 𝛾൯ = 0. And 

lim→ஶ 𝑆൫𝑎 , 𝑎ା, 𝛾൯ = 0. Therefore it is a Cauchy sequence in complete NMS 𝑉.Hence {𝑎} is convergent and converges to 
some 𝑐 ∈ 𝑉. Now we show that this point  𝑐 is a neutrosophic fixed point of 𝑓. For  
 

. 
1

𝐻(𝑎ାଵ, 𝑓(𝑐), 𝛾)
− 1 =

1

𝐻(𝑓(𝑎), 𝑓(𝑐), 𝛾)
− 1 

 

 ≤ 𝛼 ൬
1

𝐻(𝑎 , 𝑐, 𝛾)
− 1൰ → 0  𝑎𝑠  𝑛 → ∞. 

 

So that 
ଵ

ு(,(),ఊ)
− 1 = 0 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝐻(𝑐, 𝑓(𝑐), 𝛾) = 1 . 

 
In the same way, we can have 

 
𝑀(𝑐, 𝑓(𝑐), 𝛾) = 0         𝑎𝑛𝑑         𝑆(𝑐, 𝑓(𝑐), 𝛾) = 0. 

 
Therefore  𝑓(𝑐) = 𝑐. 
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To show the uniqueness, let 𝑓(𝑏) = 𝑏 for some 𝑏 ∈ 𝑉. Then for all 𝛾 > 0, we have 
 

1

𝐻(𝑐, 𝑏, 𝛾)
− 1 =

1

𝐻(𝑓(𝑐), 𝑓(𝑏), 𝛾)
− 1 

                                                              ≤ 𝛼 ൬
1

𝐻(𝑐, 𝑏, 𝛾)
− 1൰.  

 
Which on repeating yields 
 

1

𝐻(𝑐, 𝑏, 𝛾)
− 1 ≤ 𝛼 ൬

1

𝐻(𝑐, 𝑏, 𝛾)
− 1൰ → 0       𝑎𝑠   𝑛 → ∞. 

Also  
 
𝑀(𝑐, 𝑏, 𝛾) = M(𝑓(𝑐), 𝑓(𝑏), 𝛾) ≤ 𝛼𝑀(𝑐, 𝑏, 𝛾) ≤ 𝛼(𝑀(𝑐, 𝑏, 𝛾)) → 0       𝑎𝑠   𝑛 → ∞ 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑀(𝑐, 𝑏, 𝛾) = 0. 
S(𝑐, 𝑏, 𝛾) = S(𝑓(𝑐), 𝑓(𝑏), 𝛾) ≤ 𝛼𝑆(𝑐, 𝑏, 𝛾) ≤ 𝛼(𝑆(𝑐, 𝑏, 𝛾)) → 0       𝑎𝑠   𝑛 → ∞ 𝑠𝑜 𝑡ℎ𝑎𝑡 S(𝑐, 𝑏, 𝛾) = 0. 
Thus 𝐻(𝑐, 𝑏, 𝛾) = 1 𝑎𝑛𝑑 𝑀(𝑐, 𝑏, 𝛾) =  𝑆(𝑐, 𝑏, 𝛾) = 0 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑐 = 𝑏.  
 

CONCLUSION 
 
The above theorem is an expansion version to the one Kirisci et al (21) on NMS. Also it opens an era to establish a fixed point 
theory on NMS. 
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