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ARTICLE INFO                                          ABSTRACT 
 

 
 
 

Let G = (V,E) be a graph with p vertices and q edges. A Extended Mean Cordial Labeling of a Graph 
G with vertex set V is a bijection from V to {0, 1,2} such that each edge uv is assigned the label 
 (⌈�(�) + �(�))⌉ 2⁄  where ⌈ x ⌉   is the least integer greater than or equal to x with the condition that 
the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 
and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. 
The graph that admits a Extended Mean Cordial Labeling is called Extended Mean Cordial Graph. In 
this paper, we proved that Path related graphs Pn

2, Pn, PnʘP2, Pn: Sm, S (PN) are Extended Mean 
Cordial Graphs. 

 
 
 
 
 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 

 
 
 

 
 

INTRODUCTION 
 

 

A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is 
called edges. Each pair e = {u,v} of  vertices in E is called edges or a line of G. In this paper, we proved that Path related 
graphs Pn

2, Pn, PnʘP2, Pn: Sm ,S(PN)  are  Extended mean  Cordial Graphs. For graph theory terminology, we follow [2]. 
 
PRELIMINARIES 
 
Let G = (V,E) be a graph with p vertices and q edges. A Extended Mean Cordial Labeling of a Graph G with vertex set V is a 

bijection from V to {0, 1,2} such that each edge uv is assigned the label  ( ⌈�(�) + �(�))⌉ 2⁄ where ⌈ x ⌉  is the least integer 
greater than or equal to x with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 
differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1.  
 
The graph that admits a Extended Mean Cordial Labeling is calle Extended Mean Cordial Graph. In this paper, we proved that Path 
related graphs Pn

2, Pn, PnʘP2, Pn: Sm ,S(PN )  are  Extended Mean  Cordial Graphs. 
 
Definition: 2.1 
 
Pn Graph with sequence of n vertices, and adjacent vertices are joined with an edge Pn  is a path of length n-1. 
 
Definition: 2.2 
 
[Pn: S2] is a graph obtained from a path Pn by joining every vertex of a path to a root of a star S2 by an edge. 
 
Definition: 2.3 
 

PnʘP2 It is a graph obtain from a path Pn by joined one end of P2 with each vertices of Pn.    
 

Definition: 2.4 
 

For a graph G the splitting graph s’ of G is obtained by adding a new vertex v’ corresponding to each vertex v of G such that N(v)= 
N(v’). 
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RESULTS 
 
Theorem: 3.1 
 
Graph Pn

2 is a Extended Mean Cordial Graph. 
 
Proof: 
 
Let V (Pn

2) = {[ui:   1 ≤ i ≤ n] 
 
Let E (Pn

2) = {[(uiui+1): 1 ≤ i ≤ n-1] U [(uiui+2): 1 ≤ i ≤ n-2]} 
 
Define f: V (Pn

2) → {0, 1, 2} 
 
The vertex labeling are, 
 

f(ui) = �
1  � ≡ 1 ��� 4
2  � ≡ 2 ��� 4
0 � ≡ 0,3 ��� 4

�  , 1 ≤ � ≤ � 

 
The edge labeling are, 
 

f*[(uiui+1)] =�
1  � ≡ 1,2 ��� 4
0  � ≡ 3,0 ��� 4

� , 1 ≤ � ≤ � − 1 

 

f*[(uiui+2)] =�
1  � ≡ 1 ��� 4
0  � ≡ 0 ��� 4

� , 1 ≤ � ≤ � − 2 

 
Here, ef (1) = ef (0) +1  
 
Hence, Pn

2 is Satisfies the condition| ef (0) – ef(1) | ≤ 1. Therefore, Pn
2 is a Extended Mean C ordial Graph. 

 
For example, P7

2 is a Extended Mean Cordial Graph as shown in the Figure 3.2 
 

 
 

Figure 3.2 
Theorem: 3.3 
 
Graph [Pn: Sm] is a Extended Mean Cordial Graph 
 
Proof: 
 
Let V (Pn: Sm) = {[(ui,vi) : 1≤ i≤ n]U[vij:  1≤ i≤n,  1≤ j≤ 3]} 
 
Let E (Pn: Sm )= {[(uiui+1) : 1≤ i≤ n-1] U [(uivi) : 1≤ i≤ n]U [(vivij): 
 
                      1≤ i ≤ n, 1≤ j ≤ 3]} 
 
Define f:v (Pn: Sm) →{0,1,2} by 
 
The vertex labeling are, 
 

f (ui) = �
0  � ≡ 1 ��� 2
1  � ≡ 0 ��� 2

� , 1 ≤ � ≤ � 

f (vi)=  1  , 1≤ i≤ n 

f (vij) = �
0  � ≡ 1 ��� 3

1  � ≡ 2,0 ��� 3
� , 1 ≤ � ≤ 3, 1 ≤ � ≤ � 
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The edge labeling are, 
 
f* (uiui+1) =0  , 1 ≤  i ≤  n-1 

f* (uivi)  =�
0  � ≡ 1 ��� 2
1  � ≡ 0 ��� 2

� , 1 ≤ � ≤ � 

f* (vivij) =�
0  � ≡ 1 ��� 3

1  � ≡ 2,0 ��� 3
� , 1 ≤ � ≤ 3, 1 ≤ � ≤ � 

 
Here, ef (1) = ef (0) +1  
 
Hence, Pn: Sm is Satisfies the condition| ef (0) – ef (1) | ≤ 1 
 
Therefore, Pn: Sm is a Extended Mean Cordial Graph. 
 
For example, P2: S3   is a Extended Mean Cordial Graph as shown in the Figure 3.4 
 

 
 

Figure 3.4 

Theorem 3.5 
 
Graph Pn ʘ P2 is a Extended Mean Cordial Graph. 
 
Proof: 
 
Let G be Pn ʘ P2 

 
Let V [Pn ʘ P2] = {(vi): 1≤i≤n, (ui1, ui2): 1≤i≤n} 
Let E [Pn ʘ P2] = {[(ui1ui2):1≤i≤n]∪ [(vi vi+1): 1≤i≤n-1]∪ 
                            [(vi ui1): 1≤i≤n]} 
 
Define f: V (Pn ʘ P2)→{0,1,2} by 
 

f (vi) = �
2 �� � ≡ 1 ��� 2
1 �� � ≡ 0 ��� 2

� ,  1≤i≤n 

f (ui1) = 0 , 1≤i≤n 
f (ui2) = 0 ,  1≤i≤n 
 
The induced edge labeling are 
 
f * (vi vi+1) =1  ,  1≤i≤n-1 
f * (ui1 ui2) =0  ,    1≤i≤ n  

f * (vi ui1) = �
0 �� � ≡ 0 ��� 2
1 �� � ≡ 1 ��� 2

� , 1≤i≤n 

 
Here the graph satisfies the condition |ef (0)-ef (1)|≤1 
 
Hence, Pn ʘ P2 is Satisfies the condition| ef (0) – ef (1) | ≤ 1 
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Therefore, Pn ʘ P2 is a Extended Mean Cordial Graph. 
 
For example, P3 ʘ P2   is a Extended Mean Cordial Graph as shown in the Figure3.6 
 

 
Figure  3.6 

 
Theorem 3.7 
 
Graph S (PN) is a Extended Mean Cordial Graph 
 
Proof: 
 
Let G be S (PN) 
Let V [S (PN)] = {ui, vi: 1≤ � ≤ �,(wi):1≤ � ≤ � − 1} 
Let E [S (PN)] = {(ui ui+1):1 ≤ i ≤n-1] ∪ [(vi vi+1):1≤i≤n-1]∪ 
                            [(ui wi)∪(vi+1 wi)∪(vi wi)∪(vi+1 wi):1≤i≤n-1]} 
 
Define f: V (G)→{0,1,2} by 
 
f (ui) =1           1≤i≤n 
f (wi)=0           1≤i≤n-1 

f (vi) =�
2 �� � ≡ 1���2

0 �� � ≡  0���2   
�, 1≤i≤n 

 
The induced edge labeling are 
 

f * (ui ui+1) =1   ,  1≤i≤n-1 
f * (vi vi+1) =1   ,  1≤i≤n-1 
f * (ui wi)   =0   ,  1≤i≤n-1 
f * (ui+1 wi) =0  ,  1≤i≤n-1 
 

f * (vi wi) =�
0  �� � ≡ 0 ��� 2
1 �� � ≡ 1 ��� 2

�  , 1≤ i≤n-1 

 

f * (vi+1 wi) = �
0 �� � ≡ 1 ��� 2
1 ��  � ≡ 0 ��� 2

� , 1≤i≤n-1 

 
It satisfies the condition 
 
Here e f (0) = ef (1) for all n 
 
Hence, S (PN)   is Satisfies the condition| ef (0) – ef (1) | ≤ 1 
 
Therefore, S (PN)   is a Extended Mean Cordial Graph. 
 
For example, S (P4)    is a Extended Mean Cordial Graph as shown in the figure 
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Figure 3.7 
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