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INTRODUCTION 
 

The notion of semiring was introduced by Vandiver [6] in 1934. In fact semiring is a generalization of ring. In 1971 Lister [4] 
characterized those additive subgroups of rings which are closed under the triple ring product and he called this algebraic system a 
ternary ring.T. K. Dutta and S. Kar initiated prime ideals and prime radical of ternary semir-ings in [1]. The same researchers 
launched semiprime ideals and irreducible ideals of ternary semirings[2]. Furthermore S. Kar came up with the notion of quasi-
ideals and bi-ideals in ternary semirings. Similarly, M. Shabir and Bashir.S prime bi-ideals in ternary semigroups in [5]. we 
assemble requisite material on partially ordered radicals in partially ordered ternary semirings. 
 
Preliminaries 
 
In this section, the required preliminaries are presented. 
 
Definition 2.1 : A nonempty set T together with a binary operation called addition and a ternary multiplication denoted by [ ] is 
said to be a ternary semiring if T is an additive commutative semigroup satisfying the following conditions: 
 
i) [[abc]de] = [a[bcd]e] = [ab[cde]], 
ii) [(a + b)cd] = [acd] + [bcd], 
iii) [a(b + c)d] = [abd] + [acd], 
iv) [ab(c + d)] = [abc] + [abd] for all a; b; c; d; e ∈T. 
 

Note 2.2 : For the convenience we write 1 2 3x x x  instead of  1 2 3x x x
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Note 2.3: Let T be a ternary semiring. If A, B and C are three subsets of T, we shall denote the set  

ABC =  : , ,abc a A b B c C    . 

 

Note 2.4: Let T be a ternary semiring. If A, B are two subsets of T, we shall denote the set A + B =  : ,a b a A b B    and 

2A = {a + a: a∈ A}. 
 
Note 2.5: Any semiring can be reduced to a ternary semiring. 
 
Definition 2.6: A ternary semiring T is said to be a partially ordered ternary semiring or simply PO Ternary SemiringorOrdered 
Ternary Semiringprovided T is partially ordered set such that a ≤ b then   
 
(1) a + c ≤ b + c and c + a ≤ c + b,  
(2) acd ≤ bcd, cad ≤ cbd and cda ≤ cdb for all a, b, c, d∈ T. 
 
Throughout Twill denote as PO-ternary semiring unless otherwise stated. 
 
Note 2.7: Some times we write a ≥ b for a ≤ b.  That is “ ≥” is the dual relation of “≤”. 
 
Theorem 2.8: Let T be a po-ternary semiring and A ⊆T, B ⊆T and C ⊆ T. Then (i) A ⊆(A], (ii) ((A]] = (A], (iii) (A](B](C] 
⊆(ABC] and (iv) A ⊆B ⇒A ⊆(B] and (v) A ⊆B ⇒(A] ⊆(B], (vi) (A ∩ B] = (A] ∩ (B], (vii) (A ∪ B] = (A] ∪ (B]. 
 
Definition 2.9:  A  nonempty subset A of a PO-ternary semiring T is a PO-ternary ideal of T provided A is additive subsemigroup 
of T, ATT   A, TTA ⊆ A, TAT ⊆ A and (A] ⊆ A. 

 
Definition 2.10:  A PO-ternary ideal A of a PO-ternary semiring T is said to be a completely prime PO-ternary ideal of T provided 
x, y, z   T and xyzA implies either x  A or yA or zA. 
 
Definition 2.11: Let T be a ternary semiring.  A nonempty subset A of T is said to be a PO-c-system of T if for each a, b, c∈ A 
there exist an element d∈ A such that d≤abc. 
 
Definition 2.12:  A nonempty subset A of a PO-ternary semiring T is said to be a PO-m-system provided for any a, b, cA there 
exist d∈ A and x, y∈ T such that d ≤ axbyc. 
 
Definition 2.13:  Let T be a PO-ternary semiring. A non-empty subset A of T is said to be a PO-d-system of T if for each aA 

there exist an element c∈ A such that c≤ na  for all odd natural number n. 
 
Definition 2.14:  A non-empty subset A of a PO-ternary semiring T is said to be a PO-n-system provided for any aA there exist 
d∈ A and x, y∈ T such that d ≤ axaya. 
 
Theorem  2.15:  A PO-ternary ideal A of a PO-ternary semiring T is completely prime if and only if T\A is either PO-c-system of 
T or empty.  
 
Theorem 2.16: Every completely prime PO-ternary ideal of a PO-ternary semiring T is a prime PO-ternary ideal of T. 
 
Theorem 2.17:  Let T be a commutative PO-ternary semiring.  A PO-ternary ideal P of T is a prime PO-ternary ideal if and only if 
P is a completely prime PO-ternary ideal. 
 
Theorem 2.18:  If T is a globally idempotent PO-ternary semiring then every maximal PO-ternary ideal of T is a prime PO-ternary 
ideal of T. 
 
Definition 2.19: A PO-ternary ideal A of a PO-ternary semiring T is said to be a prime PO-ternary ideal of T provided X,Y,Z are 
PO-ternary ideals of T and XYZ   A   X A or Y A or Z A. 

 
Definition 2.20: A PO-ternary ideal A of a PO-ternary semiring T is said to be a completely Semiprime PO-ternary ideal provided 

xT, nx A for some odd natural number n>1 implies xA. 
 
Definition 2.21: A PO-ternary ideal A of a PO-ternary semiring T is said to be SemiprimePO-ternary ideal provided X is a PO-
ternary ideal of T and Xn  A for some odd natural number nimpliesX ⊆ A. 
 

Theorem 2.22: Every completely prime PO-ternary ideal of a PO-ternary semiring T is a completely Semiprime PO-ternary ideal 
of T. 
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Theorem 2.23: Let T be a commutative PO-ternary semiring. A PO-ternary ideal A of T is completely semiprime if and only if it 
is semiprime. 
 
Theorem 2.24: Every PO-m-system in a PO-ternary semiring T is a PO-n-system. 
 
Theorem 2.25: A PO-ternary ideal Q of a PO-ternary semiring T is a semiprime PO-ternary ideal if and only if T\Q is a PO-n-
system of T or empty. 
 
PrimePO-Radicaland Completely PrimePO-Radical 
 
We use the following notation. 
 
Notation 3.1: If A is a PO-ternary ideal of a PO-ternary semiring T, then we associate the following four types of sets. 
 

1A  = The intersection of all completely prime PO-ternary ideals of T containing A. 

2A  = {xT:xnA for some odd natural numbers n} 

3A  = The intersection of all prime PO-ternary ideals of T containing A. 

4A  = {xT:
nx  A for some odd natural number n} 

 
Theorem 3.2: If A is aPO-ternary ideal of a PO-ternary semiring T, then  

A 4A  3A  2A  1A . 

 
Proof :  
 

i) A  4A : Let xA . Then <x>A and hence x 4A .  Therefore A  4A  

ii) 4A  3A : Let x 4A . Then 
nx  A for some  odd natural number n. 

 
 Let P be any prime ideal of T containing A. 
 

Then 
nx  A for some odd natural number n nx    P. 

 
Since P is prime ,<x >  P and hence xP.  

Since this is true for all prime PO-ternary ideals of P containing A,  x 3A .  

 

Therefore 4A  3A  

 

iii) 3A  2A  : Let x 3A . Suppose if possible 2x A .  

 

Then 
nx ∉A for all odd natural number n.   

Consider Q =  nx  for all odd natural number n, and xT. 

Let a, b, c Q. Then a= ( )rx , b = ( )sx , c = ( )tx  for some odd natural numbers r, s, t. 

Therefore abc= ( )rx ( )sx ( )tx  = 
r s tx Q    and hence Q is a PO-c-system of T. 

 

By theorem 2.15, P = T\Q is a completely prime PO-ternary ideal of T and x P .    

By theorem 2.16, P is a prime PO-ternary ideal of T and x P . Therefore 3x A .   

It is a contradiction.   Therefore x  2A  and hence 3A  2A . 

iv) 2A  1A  : Let x  2A .   Now x  2A  nx ∈ A for some odd natural number n. 

Let P be any completely prime PO-ternary ideal of T containing A. 
 

Then 
nx ∈ A P  nx ∈ P  xP.Therefore x 1A  .Therefore 2A  1A .   

Hence A  4A  3A  2A  1A . 
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Corollary 3.3: If A is aPO-ternary ideal of a PO-ternary semiring T, then (A] ( 4A ] ( 3A ] ( 2A ] ( 1A ]. 

 
Proof : It is easy to verify the proof by theorem 2.8 and by theorem 3.2.  
 

Theorem 3.4: If A is aPO-ternary ideal of a commutative PO-ternary semiring T, then 1A = 2A = 3A = 4A
 

 

Proof  :  By theorem 3.2,  A 4A  3A  2A  1A .  By theorem 2.17, in a commutative PO-ternary semiring T, an ideal A is a 

prime PO-ternary ideal if A is completely prime PO-ternary ideal.  So 1A = 3A . By theorem 2.23, in a commutative PO-ternary 

semiring T aPO-ternary ideal A is semiprime if and only if A is completely semiprime PO-ternary ideal.   

So 4A = 2A and hence 1A = 2A = 3A = 4A . 

 

Corollary 3.5: If A is aPO-ternary ideal of a commutative PO-ternary semiring T, then ( 1A ] = ( 2A ] = ( 3A ] = ( 4A ]. 

 
Proof: It is easy to verify the proof by theorem 2.8 and by theorem 3.4. 
 

Note 3.6: In an arbitrary PO-ternary semiring ( 1A ] ( 2A ] ( 3A ] ( 4A ]. 

 
Example 3.7: Let T be the free ternary semigroup generated by a, b, c.  
 

It is clear that A = (T
3a T] is aPO-ternary ideal of T.  Since 

5a (T
3a T], we have a( 2A ].  

 

Evidently  
n

abc (T
3a T] for all odd natural numbers n and thus abc( 2A ]. 

  

Thus ( 2A ]is not aPO-ternary ideal of T. Therefore ( 1A ] ( 2A ] and ( 2A ]  ( 3A ]. 

 
We now introduce prime PO-radical and complete prime PO-radical of a PO-ternary ideal in a PO-ternary semiring.  
 
Definition 3.8 :  If A is a PO-ternary ideal of a PO-ternary semiring T, then the intersection of all prime PO-ternary ideals of T 

containing A is called prime PO-radical or simply PO-radical of A and it is denoted by A or rad A. 
 
Definition 3.9:  If A is a PO-ternary ideal of a PO-ternary semiring T , then the intersection of all completely prime PO-ternary 
ideals of T containing A is called completely prime PO-radical or simply complete PO-radical of A and it is denoted by c.rad A. 

Note  3.10:  If A is a PO-ternary ideal of a PO-ternary semiring T, then rad A = 3A ,  c.rad A = 1A and rad A ⊆c.rad A. 

Note  3.11:  If (A] is a PO-ternary ideal of a PO-ternary semiring T, then rad(A] = ( 3A ],  c.rad(A] = ( 1A ]and rad (A]⊆c.rad (A]. 

Corollary  3.12: If a ( ]A , then there exist aodd positive integer n such that 
na (A]. 

Proof:  

By corollary 3.3, ( 3A ] ( 2A ] and hence a ( ]A = ( 3A ] ( 2A ].  Therefore 
na (A] for some odd positive integer n. 

 
Corollary 3.13:  If A is aPO-ternary ideal of a commutative PO-ternary semiring T, then rad(A] = c.rad(A]. 
 
proof : By corollary 3.5,rad(A] = c.rad(A]. 
 
Corollary  3.14: If A is a PO-ternary ideal of a PO-ternary semiring T then c.rad(A] is a completely SemiprimePO-ternary ideal of 
T. 
proof :  
 
By theorem 2.22, c.rad (A] is a completely semiprimePO-ternary ideal of T. 
 
Theorem 3.15: If A, B and C are any three PO-ternary ideals of a PO-ternary semiring T , then 

 A   B  A


B  

 if A ∩ B∩ C ≠ ∅ then ABC  A B C A B C     

 iii) A = A . 
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 
A B A B  

 

Proof : 
 

 Suppose that A B. If P is a prime PO-ternary ideal containing B then P is a prime PO-ternary ideal containing A. Therefore 

A  B . 

 Let P be a prime PO-ternary ideal containing ABC.   
 
Then ABC ⊆ P A⊆ P or B ⊆ P or C ⊆ P  
 

 A B C  ⊆P.Therefore  P is a prime PO-ternary ideal containing A  B  C.   

Thereforerad ( A B C  ) ⊆ rad(ABC).Now let P be a prime PO-ternary ideal containing A B C  .  Then A B C  ⊆ P 

ABC ⊆ A B C  ⊆ P  ABC ⊆ P. 

 
Hence P is a prime PO-ternary ideal containing ABC.    

Therefore rad (ABC) ⊆rad( A B C  ).  Hencerad(ABC) = rad( A B C  ).  

 

Since A B C  ≠ ∅, it is clear that A ∩ B ∩ C is aPO-ternary ideal in T.   

 

Let x∈ A B C  .  

Then there exists an odd natural number n∈ N such that xn∈ A B C  .   

 

Therefore xn∈ A, xn∈ B and  xn∈ C.  It follows that x∈ A ,  x∈ B and  x∈ C .  Therefore x∈ A B C  .  

Consequently, x∈ A B C  implies that there exists odd natural numbers n, m, p∈ N such that xn∈ A, xm∈ B and xp∈ C.   

Clearly, xnmp∈A ∩ B ∩ C.  Thus x∈ A B C  .   

 

Therefore if A ∩ B ∩ C ≠ ∅then A B C A B C    . 

 

 iii) A = The intersection of all prime ideals of T containing A.  
 

Now A = The intersection of all prime PO-ternary ideals of T containing A . 

                   = The intersection of all prime PO-ternary ideals of T containing A = A  
 

Therefore A =  A . 

 

iv) By condition i) we have A + B ⊆ A B  and so A B A B   .  Also by condition i) we have 

A B A B   and hence by using condition ii), A B A B   =  A B .  Therefore 

A B A B   . 

 
Corollary 3.16: If A, B and C are any three PO-ternary ideals of a PO-ternary semiring T, then 
 

i)   A   B  ( ]A  ( ]B  

ii)  if A ∩ B∩ C ≠ ∅ then ( ]( ]( ]A B C  ( ] ( ] ( ] ( ] ( ] ( ]A B C A B C     

 iii) ( ]A =  ( ]A . 

iv) ( ] ( ] ( ]A B A B    

Theorem 3.17: If A is a PO-ternary ideal of a PO-ternary semiring T then ( ]A  is a semiprime ideal of T. 
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proof : By theorem 2.23 , ( ]A  is a semiprime ideal of T. 

 

Theorem 3.18: A PO-ternary ideal Q of PO-ternary semiring T is a semiprimePO-ternary ideal of T if and only if Q    =Q. 

 
Proof :  Suppose that Q is a semiprimePO-ternary ideal.  Clearly Q ⊆ √Q. 
Suppose if possible √Q ⊈ Q.Let a∈ √Q and a∉ Q.   
 
Now a∉ Q ⇒a∈ T\Q and Q is semiprime. By theorem 2.25, T\Q is aPO-n-system.  
By theorem 2.24, there exists aPO-m-system M such that a∈ M ⊆ T\Q. 
 
Q   T\M and now T\M is a prime PO-ternary ideal of T, aT\M.   

It is a contradiction.Therefore √Q  ⊆ Q.  Hence √Q = Q. 
 
Conversely suppose that Q is aPO-ternary ideal of T such that √Q = Q.   
By corollary 3.17, √Q is a semiprimePO-ternary ideal of T.   Therefore Q is semiprime. 
 
Corollary 3.19: A PO-ternary ideal Q of a PO-ternary semiring T is a semiprimePO-ternary ideal if and only if Q is the 
intersection of all prime PO-ternary ideal of T contains Q. 
 
Proof : By theorem 3.18., Q is semiprimeiff Q is the intersection of all prime PO-ternary ideals of T contains Q. 
 
Corollary 3.20: If A is aPO-ternary ideal of a PO-ternary semiring T, then √A is the smallest semiprimePO-ternary ideal of T 
containing A. 
 
Proof : We have that √A is the intersection of all prime PO-ternary ideals containing A in T.  
 
Since intersection of prime PO-ternary ideals is semiprime, we have √A is semiprime.   
Further, let Q be any semiprimePO-ternary ideal containing A, i.e. A⊆ Q.  So √A ⊆ √Q. 
 
Since Q is semiprime, By theorem 3.18, √Q = Q.  Therefore √A ⊆ Q. 
Hence √A  is the smallest semiprimePO-ternary ideal of T containing A. 

Theorem 3.21: If P is a prime PO-ternary ideal of a PO-ternary semiring T, then  ( )nP  = P for all odd natural numbers nN. 

Proof :We use induction on n to prove 
nP = P.  

First we prove that PP  . Since P is a prime PO-ternary ideal, PPP   PP  .  

 

Assume that PPk   for odd natural number k  such that k1 <n.  
 

Now
2 . .k k kP P P P P P P P P P P P         .   

 

Therefore 
2kP P  .  By induction 

nP = P for all odd natural number nN. 
 

Theorem 3.22: In a PO-ternary semiring T with identity there is a unique maximal PO-ternary ideal M such that ( )nM

= M for all odd natural numbers n N. 
 
Proof: Since T contains identity, T is a globally idempotent PO-ternary semiring. 
Since M is a maximal PO-ternary ideal of T, by theorem 2.24 M is prime.  

By theorem 3.21, ( )nM = M for all odd natural numbers n. 

Theorem 3.23: If A is a PO-ternary ideal of a PO-ternary semiring T then A ={x ∈ T : every m-system of T containing x meets 

A } i.e., A  = { : ( )x T M x A   }. 

 

Proof: Suppose that x A .  Let M be aPO-m-system containing x.  
 

Then T\M is a prime PO-ternary ideal of T and x T\M.  If M   A =   then A   T\M.   

International Journal of Recent Advances in Multidisciplinary Research                                                                                0675 



 

Since T\M is a prime PO-ternary ideal containing A, A   T\M and hence x∈ T\M.  

 

It is a contradiction.  Therefore M(x) A   .  Hence x : ( )x T M x A  . Conversely suppose that x

 : ( )x T M x A  .  

 

Suppose if possible x A .   Then there exists a prime PO-ternary ideal P containing A such that x P.  Now T\P is aPO-m-
system and x  T\P.   
 

A   P   T\P A =   x : ( )x T M x A  . 

 

It is a contradiction.  Therefore x A . Thus A =  : ( )x T M x A  . 

 
Conclusion: In this paper mainly we studied about prime, semiprimePO-ternary ideal in PO-ternary semiring. 
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