
sZ

Research Article

HADOOP VS BIG DATA

*Regha, S. and Dr. Manimekalai, M.

Department of computer Science, Shrimati Indira Gandhi College, Trichy, India

ARTICLE INFO ABSTRACT

Due to the advent of new technologies, devices, and communication means like social networking sites,
the amount of data produced by mankind is growing rapidly every year. The amount of data produced
by us from the beginning of time till 2003 was 5 billion gigabytes. If you pile up the data in the form of
disks it may fill an entire football field. The same amount was created in every two days in 2011, and in
every ten minutes in 2013. This rate is still growing enormously. Though all this information produced
is meaningful and can be useful when processed, it is being neglected.90% of the world’s data was
generated in the last few years. Big data means really a big data, it is a collection of large datasets that
cannot be processed using traditional computing techniques. Big data is not merely a data, rather it has
become a complete subject, which involves various tools, technqiues and frameworks.Hadoop is an
open-source framework that allows to store and process big data in a distributed environment across
clusters of computers using simple programming models. It is designed to scale up from single servers
to thousands of machines, each offering local computation and storage.

INTRODUCTION

Big data involves the data produced by different devices and
applications. Given below are some of the fields that come
under the umbrella of Big Data.

 Black Box Data: It is a component of helicopter, airplanes,

and jets, etc. It captures voices of the flight crew,
recordings of microphones and earphones, and the
performance information of the aircraft.

 Social Media Data: Social media such as Facebook and
Twitter hold information and the views posted by millions
of people across the globe.

 Stock Exchange Data: The stock exchange data holds
information about the ‘buy’ and ‘sell’ decisions made on a
share of different companies made by the customers.

 Power Grid Data: The power grid data holds information
consumed by a particular node with respect to a base
station.

 Transport Data: Transport data includes model, capacity,
distance and availability of a vehicle.

 Search Engine Data: Search engines retrieve lots of data
from different databases.

*Corresponding author: Regha, S.,
Department of computer Science, Shrimati Indira Gandhi College,
Trichy, India.

Thus Big Data includes huge volume, high velocity, and
extensible variety of data. The data in it will be of three types.

 Structured data: Relational data.
 Semi Structured data: XML data.
 Unstructured data: Word, PDF, Text, Media Logs.

Benefits of Big Data

Big data is really critical to our life and its emerging as one of
the most important technologies in modern world. Follow are
just few benefits which are very much known to all of us:

 Using the information kept in the social network like
Facebook, the marketing agencies are learning about the
response for their campaigns, promotions, and other
advertising mediums.

 Using the information in the social media like preferences
and product perception of their consumers, product
companies and retail organizations are planning their
production.

 Using the data regarding the previous medical history of
patients, hospitals are providing better and quick service.

Big Data Technologies

Big data technologies are important in providing more accurate
analysis, which may lead to more concrete decision-making
resulting in greater operational efficiencies, cost reductions,
and reduced risks for the business.

Article History:

Received 29th May 2015
Received in revised form
12th June, 2015
Accepted 16th July, 2015
Published online 31st August, 2015

International journal of Research and Review in Health Sciences, July -2014 International Journal of Recent Advances in Multidisciplinary Research, August -2015

International Journal of Recent Advances in Multidisciplinary Research

Vol. 02, Issue 08, pp.0656-0661, August, 2015

Keywords:

Big Data,
Benefits of Big Data,
Traditional Approach,
MapReduce Algorithm,
Hadoop and Hadoop
Distributed File System.

To harness the power of big data, you would require an
infrastructure that can manage and process huge volumes of
structured and unstructured data in realtime and can protect
data privacy and security.

There are various technologies in the market from different
vendors including Amazon, IBM, Microsoft, etc., to handle big
data. While looking into the technologies that handle big data,
we examine the following two classes of technology:

Operational Big Data

This include systems like MongoDB that provide operational
capabilities for real-time, interactive workloads where data is
primarily captured and stored. NoSQL Big Data systems are
designed to take advantage of new cloud computing
architectures that have emerged over the past decade to allow
massive computations to be run inexpensively and efficiently.
This makes operational big data workloads much easier to
manage, cheaper, and faster to implement. Some NoSQL
systems can provide insights into patterns and trends based on
real-time data with minimal coding and without the need for
data scientists and additional infrastructure.

Analytical Big Data

This includes systems like Massively Parallel Processing
(MPP) database systems and MapReduce that provide
analytical capabilities for retrospective and complex analysis
that may touch most or all of the data. MapReduce provides a
new method of analyzing data that is complementary to the
capabilities provided by SQL, and a system based on
MapReduce that can be scaled up from single servers to
thousands of high and low end machines. These two classes of
technology are complementary and frequently deployed
together.

Operational vs. Analytical Systems

Big Data Challenges

The major challenges associated with big data are as follows:

 Capturing data
 Curation
 Storage
 Searching
 Sharing
 Transfer
 Analysis
 Presentation

To fulfill the above challenges, organizations normally take the
help of enterprise servers.

Traditional Approach

In this approach, an enterprise will have a computer to store
and process big data. Here data will be stored in an RDBMS
like Oracle Database, MS SQL Server or DB2 and
sophisticated softwares can be written to interact with the
database, process the required data and present it to the users
for analysis purpose.

Limitation

This approach works well where we have less volume of data
that can be accommodated by standard database servers, or up
to the limit of the processor which is processing the data. But
when it comes to dealing with huge amounts of data, it is really
a tedious task to process such data through a traditional
database server.

Google’s Solution

Google solved this problem using an algorithm called
MapReduce. This algorithm divides the task into small parts
and assigns those parts to many computers connected over the
network, and collects the results to form the final result dataset.
Above diagram shows various commodity hardwares which
could be single CPU machines or servers with higher capacity.

 Operational Analytical

Latency 1 ms - 100 ms 1 min - 100 min
Concurrency 1000 - 100,000 1 - 10
Access Pattern Writes and Reads Reads
Queries Selective Unselective
Data Scope Operational Retrospective
End User Customer Data Scientist
Technology NoSQL MapReduce, MPP Database

International Journal of Recent Advances in Multidisciplinary Research 0657

MapReduce

MapReduce is a processing technique and a program model for
distributed computing based on java. The MapReduce
algorithm contains two important tasks, namely Map and
Reduce. Map takes a set of data and converts it into another set
of data, where individual elements are broken down into tuples
(key/value pairs). Secondly, reduce task, which takes the
output from a map as an input and combines those data tuples
into a smaller set of tuples. As the sequence of the name
MapReduce implies, the reduce task is always performed after
the map job. The major advantage of MapReduce is that it is
easy to scale data processing over multiple computing nodes.
Under the MapReduce model, the data processing primitives
are called mappers and reducers. Decomposing a data
processing application into mappers and reducers is sometimes
nontrivial. But, once we write an application in the MapReduce
form, scaling the application to run over hundreds, thousands,
or even tens of thousands of machines in a cluster is merely a
configuration change. This simple scalability is what has
attracted many programmers to use the MapReduce model.

The Algorithm

 Generally MapReduce paradigm is based on sending the
computer to where the data resides!

 MapReduce program executes in three stages, namely map
stage, shuffle stage, and reduce stage.

o Map stage: The map or mapper’s job is to process the input
data. Generally the input data is in the form of file or
directory and is stored in the Hadoop file system (HDFS).
The input file is passed to the mapper function line by line.
The mapper processes the data and creates several small
chunks of data.

o Reduce stage: This stage is the combination of
the Shuffle stage and theReduce stage. The Reducer’s job
is to process the data that comes from the mapper. After
processing, it produces a new set of output, which will be
stored in the HDFS.

 During a MapReduce job, Hadoop sends the Map and
Reduce tasks to the appropriate servers in the cluster.

 The framework manages all the details of data-passing such
as issuing tasks, verifying task completion, and copying
data around the cluster between the nodes.

 Most of the computing takes place on nodes with data on
local disks that reduces the network traffic.

 After completion of the given tasks, the cluster collects and
reduces the data to form an appropriate result, and sends it
back to the Hadoop server.

Inputs and Outputs (Java Perspective)

The MapReduce framework operates on <key, value> pairs,
that is, the framework views the input to the job as a set of
<key, value> pairs and produces a set of <key, value> pairs as
the output of the job, conceivably of different types. The key
and the value classes should be in serialized manner by the
framework and hence, need to implement the Writable
interface.

Additionally, the key classes have to implement the Writable-
Comparable interface to facilitate sorting by the framework.
Input and Output types of a MapReduce job: (Input) <k1, v1> -
> map -> <k2, v2>-> reduce -> <k3, v3>(Output).

Terminology

 PayLoad - Applications implement the Map and the

Reduce functions, and form the core of the job.
 Mapper - Mapper maps the input key/value pairs to a set of

intermediate key/value pair.
 NamedNode - Node that manages the Hadoop Distributed

File System (HDFS).
 DataNode - Node where data is presented in advance

before any processing takes place.
 MasterNode - Node where JobTracker runs and which

accepts job requests from clients.
 SlaveNode - Node where Map and Reduce program runs.
 JobTracker - Schedules jobs and tracks the assign jobs to

Task tracker.
 Task Tracker - Tracks the task and reports status to

JobTracker.
 Job - A program is an execution of a Mapper and Reducer

across a dataset.
 Task - An execution of a Mapper or a Reducer on a slice of

data.

Task Attempt - A particular instance of an attempt to execute

a task on a SlaveNode.

Hadoop

Doug Cutting, Mike Cafarella and team took the solution
provided by Google and started an Open Source Project called
HADOOP in 2005 and Daug named it after his son's toy
elephant. Now Apache Hadoop is a registered trademark of the
Apache Software Foundation.

Hadoop runs applications using the MapReduce algorithm,
where the data is processed in parallel on different CPU nodes.

 Input Output

Map <k1, v1> list (<k2, v2>)
Reduce <k2, list(v2)> list (<k3, v3>)

International Journal of Recent Advances in Multidisciplinary Research 0658

In short, Hadoop framework is capabale enough to develop
applications capable of running on clusters of computers and
they could perform complete statistical analysis for a huge
amounts of data.

Hadoop Architecture

Hadoop framework includes following four modules:

 Hadoop Common: These are Java libraries and utilities

required by other Hadoop modules. These libraries
provides filesystem and OS level abstractions and contains
the necessary Java files and scripts required to start
Hadoop.

 Hadoop YARN: This is a framework for job scheduling
and cluster resource management.

 Hadoop Distributed File System (HDFS™):
distributed file system that provides high-
to application data.

 Hadoop MapReduce: This is YARN-
parallel processing of large data sets.

We can use following diagram to depict these four components
available in Hadoop framework.

Since 2012, the term "Hadoop" often refers not just to the base
modules mentioned above but also to the collection of
additional software packages that can be installed on top of or
alongside Hadoop, such as Apache Pig, Apache Hive, Apache
HBase, Apache Spark etc.

How Does Hadoop Work?

Stage 1

A user/application can submit a job to the Hadoop (a hadoop
job client) for required process by specifying the following
items:

 The location of the input and output files in the distributed

file system.
 The java classes in the form of jar file containing the

implementation of map and reduce functions.
 The job configuration by setting different parameters

specific to the job.

International Journal of Recent Advances in Multidisciplinary Research

In short, Hadoop framework is capabale enough to develop
applications capable of running on clusters of computers and

complete statistical analysis for a huge

Hadoop framework includes following four modules:

These are Java libraries and utilities
required by other Hadoop modules. These libraries

filesystem and OS level abstractions and contains
the necessary Java files and scripts required to start

This is a framework for job scheduling

Hadoop Distributed File System (HDFS™): A
-throughput access

-based system for

We can use following diagram to depict these four components

Since 2012, the term "Hadoop" often refers not just to the base
modules mentioned above but also to the collection of
additional software packages that can be installed on top of or
alongside Hadoop, such as Apache Pig, Apache Hive, Apache

A user/application can submit a job to the Hadoop (a hadoop
job client) for required process by specifying the following

The location of the input and output files in the distributed

classes in the form of jar file containing the
implementation of map and reduce functions.
The job configuration by setting different parameters

Stage 2

The Hadoop job client then submits the job (jar/executable etc)
and configuration to the JobTracker which then assumes the
responsibility of distributing the software/configuration to the
slaves, scheduling tasks and monitoring them, providing status
and diagnostic information to the job

Stage 3

The Task Trackers on different
Map Reduce implementation and output of the reduce function
is stored into the output files on the file system.
System was developed using distributed file system design. It
is run on commodity hardware. Unlike ot
systems, HDFS is highly fault tolerant and designed using low
cost hardware. HDFS holds very large amount of data and
provides easier access. To store such huge data, the files are
stored across multiple machines. These files are stored in
redundant fashion to rescue the system from possible data
losses in case of failure. HDFS also makes applications
available to parallel processing.

Hadoop Distributed File System

Hadoop can work directly with any mountable distributed file
system such as Local FS, HFTP FS, S3 FS, and others, but the
most common file system used by Hadoop is the Hadoop
Distributed File System (HDFS).
System (HDFS) is based on the Google File System (GFS) and
provides a distributed file system th
large clusters (thousands of computers) of small computer
machines in a reliable, fault-tolerant manner.

HDFS uses a master/slave architecture where master consists
of a single NameNode that manages the file system metadata
and one or more slave DataNodes
A file in an HDFS namespace is split into several blocks and
those blocks are stored in a set of DataNodes. The NameNode
determines the mapping of blocks to the DataNodes. The
DataNodes takes care of read and write operation with the file
system. They also take care of block creation, deletion and
replication based on instruction given by NameNode.
provides a shell like any other file system and a list of
commands are available to interact with the
shell commands will be covered in a separate chapter along
with appropriate examples.

Features of HDFS

 It is suitable for the distributed storage and processing.
 Hadoop provides a command interface to interact with

HDFS.
 The built-in servers of namenode and datanode help users

to easily check the status of cluster.
 Streaming access to file system data.
 HDFS provides file permissions and authentication.

HDFS Architecture

Given below is the architecture of a Hadoop File System.
HDFS follows the master-slave architecture and it has the
following elements.

International Journal of Recent Advances in Multidisciplinary Research

The Hadoop job client then submits the job (jar/executable etc)
to the JobTracker which then assumes the

responsibility of distributing the software/configuration to the
slaves, scheduling tasks and monitoring them, providing status
and diagnostic information to the job-client.

The Task Trackers on different nodes execute the task as per
Map Reduce implementation and output of the reduce function
is stored into the output files on the file system. Hadoop File
System was developed using distributed file system design. It
is run on commodity hardware. Unlike other distributed
systems, HDFS is highly fault tolerant and designed using low-

HDFS holds very large amount of data and
provides easier access. To store such huge data, the files are
stored across multiple machines. These files are stored in
redundant fashion to rescue the system from possible data
losses in case of failure. HDFS also makes applications
available to parallel processing.

Hadoop can work directly with any mountable distributed file
Local FS, HFTP FS, S3 FS, and others, but the

most common file system used by Hadoop is the Hadoop
Distributed File System (HDFS). The Hadoop Distributed File
System (HDFS) is based on the Google File System (GFS) and
provides a distributed file system that is designed to run on
large clusters (thousands of computers) of small computer

tolerant manner.

HDFS uses a master/slave architecture where master consists
that manages the file system metadata

DataNodes that store the actual data.
A file in an HDFS namespace is split into several blocks and
those blocks are stored in a set of DataNodes. The NameNode
determines the mapping of blocks to the DataNodes. The

ad and write operation with the file
system. They also take care of block creation, deletion and
replication based on instruction given by NameNode. HDFS
provides a shell like any other file system and a list of
commands are available to interact with the file system. These
shell commands will be covered in a separate chapter along

It is suitable for the distributed storage and processing.
Hadoop provides a command interface to interact with

ervers of namenode and datanode help users
to easily check the status of cluster.
Streaming access to file system data.
HDFS provides file permissions and authentication.

Given below is the architecture of a Hadoop File System.
slave architecture and it has the

 0659

Namenode

The namenode is the commodity hardware that contains the
GNU/Linux operating system and the namenode software. It is
a software that can be run on commodity hardware. The system
having the namenode acts as the master server and it does the
following tasks:

 Manages the file system namespace.
 Regulates client’s access to files.
 It also executes file system operations such as renaming,

closing, and opening files and directories.

Datanode

The datanode is a commodity hardware having the GNU/Linux
operating system and datanode software. For every node
(Commodity hardware/System) in a cluster, there will be a
datanode. These nodes manage the data storage of their system.

 Datanodes perform read-write operations on the file

systems, as per client request.
 They also perform operations such as block creation,

deletion, and replication according to the instructions of the
namenode.

Block

Generally the user data is stored in the files of HDFS. The file
in a file system will be divided into one or more segments
and/or stored in individual data nodes. These file segments are
called as blocks. In other words, the minimum amount of data
that HDFS can read or write is called a Block. The default
block size is 64MB, but it can be increased as per the need to
change in HDFS configuration.

Goals of HDFS

 Fault detection and recovery: Since HDFS includes a

large number of commodity hardware, failure of
components is frequent. Therefore HDFS should have
mechanisms for quick and automatic fault detection and
recovery.

 Huge datasets: HDFS should have hundreds of nodes per
cluster to manage the applications having huge datasets.

 Hardware at data: A requested task can be done
efficiently, when the computation takes place near the data.
Especially where huge datasets are involved, it reduces the
network traffic and increases the throughput.

MapReduce is a framework using which we can write
applications to process huge amounts of data, in parallel, on
large clusters of commodity hardware in a reliable manner.

Conclusion

As data engineering and data analytics advances to a next
level, Big data testing is inevitable. Big data processing could
be Batch, Real-Time, or Interactive 3 stages of Testing Big
Data applications are Data staging validation ,"MapReduce"
validation,Output validation phase. Architecture Testing is the
important phase of Big data testing, as poorly designed system
may lead to unprecedented errors and degradation of
performance.

Performance testing for Big data includes verifying Data
throughput, Data processing and Sub-component performance
Big data testing is very different from Traditional data testing
in terms of Data, Infrastructure & Validation Tools. Big Data
Testing challenges include virtualization, test automation and
dealing with large dataset.

Performance testing of Big Data applications is also an issue.
Hadoop runs applications using the MapReduce algorithm,
where the data is processed in parallel on different CPU nodes.
In short, Hadoop framework is capabale enough to develop
applications capable of running on clusters of computers and
they could perform complete statistical analysis for a huge
amounts of data. Hadoop framework allows the user to quickly
write and test distributed systems. It is efficient, and it
automatic distributes the data and work across the machines
and in turn, utilizes the underlying parallelism of the CPU
cores. Hadoop does not rely on hardware to provide fault-
tolerance and high availability (FTHA), rather Hadoop library
itself has been designed to detect and handle failures at the
application layer. Servers can be added or removed from the
cluster dynamically and Hadoop continues to operate without
interruption. Another big advantage of Hadoop is that apart
from being open source, it is compatible on all the platforms
since it is Java based.

Acknowledgments

We would like to thank all students and Professors of the
seminars of Big Data for various University, summer term
2012 onwards, for the fruitful discussions. We would like to
thank the entire Hadoop++/HAIL team for their feedback and
support.

REFERENCES

Abadi, D. et al. 2009. Column-Oriented Database Systems.

PVDLB, 2(2):1664–1665.
Afrati, F. N. and. Ullman, J. D 2010. Optimizing Joins in a

Map-Reduce Environment. In EDBT, pages 99–110.
Babu, S. 2010. Towards automatic optimization of MapReduce

programs. In SOCC, pages 137–142.
Blanas et al. S. 2010. A Comparison of Join Algorithms for

Log Processing in MapReduce. In SIGMOD, pages 975–
986.

Dean, J. and Ghemawat, S. 2010. MapReduce: A Flexible
Data Processing Tool. CACM, 53(1):72–77.

Dittrich, J., Quiane-Ruiz, J.A., Jindal, A., Kargin, Y., Setty, V.
and Schad, J. 2010. Hadoop++: Making a Yellow Elephant
Run Like a Cheetah (Without It Even Noticing). PVLDB,
3(1):519–529.

Dittrich, J., Quiane-Ruiz, S., Richter, S., Schuh, A., Jindal, and
´ Schad, J. 2012. Only Aggressive Elephants are Fast
Elephants. PVLDB, 5.

Floratou, A. et al. 2011. Column-Oriented Storage Techniques
for MapReduce. PVLDB, 4(7):419–429.

Gates, A. et al. 2009. Building a HighLevel Dataflow System
on Top of MapReduce: The Pig Experience. PVLDB,
2(2):1414–1425.

Ghemawat, S., Gobioff, H. and Leung, S.T. 2003. The Google
file system. In SOSP, pages 29–43.

Hadoop, http://hadoop.apache.org/mapreduce/.

International Journal of Recent Advances in Multidisciplinary Research 0660

Herodotou, H. and Babu, S. 2011. Profiling, What-if Analysis,
and Cost-based Optimization of MapReduce Programs.
PVLDB, 4(11):1111–1122.

 Isard, M. et al. 2007. Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks. In EuroSys,
pages 59–72.

Jahani, E., Cafarella, M. J. and C. Re. 2011. Automatic
Optimization for ´ MapReduce Programs. PVLDB,
4(6):385–396.

Jiang, et al. D. 2010. The Performance of MapReduce: An In-
depth Study. PVLDB, 3(1-2):472–483.

International Journal of Recent Advances in Multidisciplinary Research 0661

