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This paper describes early progress in novel, interdisciplinary work that applies concepts and methods 
from Computer Vision to the development of a visual model of restorative scenes. Such a model has the 
potential to both enhance Attention Restoration Theory (ART) and to find numerous practical 
applications in the design and synthesis of living spaces and visual artefacts. To explore the feasibility 
of a visual model of restorative scenes, a comparison between known human gaze patterns and an 
exclusively bottom-up computational model of attention was performed. Similarities were found, 
providing evidence for a key claim of ART. Visual Models were then developed with 3 different 
motivations: i) biological plausibility, ii) a concern for model interpretability, and iii) a hypothesis that 
more abstract scene properties such as complexity and information content are responsible for 
fascination and restoration. Image datasets rated by humans for restorative potential were developed and 
used to construct and test these models and encouraging results were found. This work is the first to 
combine Computer Vision and Environmental Psychology and it is hoped that further collaborations are 
inspired. 
 

 

 

 

 

INTRODUCTION 
 

Interdisciplinary integration is often needed for the study of 
phenomena too broad or too complex for individual disciplines 
to adequately address (Repko, 2011; Klein and Newell, 1997). 
Towards integration, disciplines may contribute perspectives, 
concepts and theory that may yield a more comprehensive 
understanding of the phenomenon under study, as well as 
methodology and tools for both research and practical 
applications (Repko, 2011). Environmental Psychology is 
inherently interdisciplinary (Veith and Arkkelin, 1995). In its 
attempt to study the “molar relationships between behaviour 
and experience and the built and natural environments” (Bell  
et al, 2001:6) it has drawn upon Geography, Economics, 
Landscape Architecture, Sociology and Anthropology, among 
others. However, Environmental Psychology has had relatively 
little contact with computing and its related fields of study. 
Admittedly, some work has been done using computer 
graphics to synthesise visual environments (eg. de Koort et al, 
2003) but the use of computers to automatically analyse visual 
environments (a vastly more difficult task) has, to the best of 
our knowledge, not been attempted.  
 
*Corresponding author: James Mountstephens, 
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The automatic analysis of images by machine is a key concern 
of Computer Vision. Humans are effortlessly able to extract a 
vast range of visual information from their environment and 
Computer Vision seeks to develop algorithms and hardware 
that allow machines to do likewise (Prince, 2012; Ponce and 
Forsythe, 2011; Szeliski, 2010). Also inherently 
interdisciplinary, Computer Vision draws upon Mathematics, 
Physics, Neurobiology and Cognitive Neuroscience, Signal 
Processing, Artificial Intelligence and Machine Learning, to 
build mathematical and algorithmic models of common 
processes in vision such as scene and object recognition, 
perceptual grouping, depth and motion perception (Ponce and 
Forsythe, 2011). Additionally, the sequential and selective 
aspects of scene perception have been studied with 
computational models of visual attention (Borji and Itti, 2013; 
Itti and Koch, 2001). Such models can enhance our 
understanding of human vision and help to reveal the structures 
and processes underlying our interpretation of scenes. At a 
practical level, implementations of models are intended to be 
able to receive a digital image of a scene as input and 
automatically extract and output information of interest 
contained therein. Although the main lesson of more than 40 
years of work in Computer Vision is that achieving human-
level performance is incredibly difficult (Szeliski, 2010), 
considerable progress has been made in the extraction of 
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objective image properties. However, little attention has been 
given to the automatic evaluation of visual scenes in terms of 
aesthetics, or the effect that certain images can have on a 
human viewer, which may be beneficial. Emprical work in 
Environmental Psychology has demonstrated that viewing 
specific visual scenes (even as photographs) can be beneficial, 
both subjectively and objectively. In comparison to most built 
scenes, viewing certain natural environments has been shown 
to improve cognitive performance, mood, the ability to plan, 
sensitivity to interpersonal cues, as well as physiological levels 
such as stress and arousal (Kaplan 1995; Kaplan and Talbot, 
1983; Kaplan and Kaplan, 1981; Berto, 2005; Korpela and 
Hartig, 1996; Hartig et al, 2003; Hartig and Staats, 2005). One 
important way to understand these effects is as a form of 
restoration, the renewal of “physical, psychological and social 
capacities that have become depleted in meeting ordinary 
adaptational demands” (Hartig and Staats, 2005:281). 
 

Kaplan’s Attention Restoration Theory (ART) explains the 
benefits of viewing nature in terms of its effect on the crucial 
cognitive resource of attention (Kaplan, 1995). ART is 
predicated on a distinction between two main modes of 
attention, which is also recognised by cognitive science and by 
computational modelling. Involuntary (or exogenous) attention 
is driven largely bottom-up by sensory stimuli. It is responsible 
for effortless orientation to salient stimuli and is thought to be 
mediated subcortically in the superior colliculi. Voluntary (or 
endogenous, directed) attention involves top-down inhibition 
of involuntary attention and the neural excitation of task-
relevant locations. It is mediated by a number of cortical areas 
forming a “dorsoparietal network” and is crucial for intentional 
action and concentrating on tasks. However, voluntary 
attention requires effort to sustain and long-term demands 
deplete this resource, leading to what ART calls directed 
attention fatigue (DAF). DAF leaves us unhappy, unable to 
plan, insensitive to interpersonal cues and increases our 
likelihood of errors in performance (Kaplan, 1995; Berto, 
2005). ART claims that natural scenes contain stimuli that 
facilitate a move into involuntary mode, where “attention is 
typically captured in a bottom-up fashion by features of the 
environment itself” (Berman, Jonides and Kaplan, 2008:1207), 
and whereby directed attention is allowed to recover. By this 
account, natural scenes are more fascinating, containing 
patterns and objects that attract attention effortlessly but are 
not so stimulating as to require effortful focus and decision-
making.  
 

Although this explanation of the benefits of nature still requires 
further substantiation, the “black box” occurrence of attention 
restoration is well-supported using methods of assessment 
devised within ART for that purpose. In (Berto, 2005) for 
example, subjects were given a sustained cognitive task 
until fatigue, shown a slideshow of either nature or built 
scenes, and then asked to perform the task again. Only the 
subjects who viewed scenes of nature performed better on 
retest, demonstrating restored capabilities. If such 
restorative benefits exist it would be worthwhile to model the 
visual properties of the scenes that drive them. The details of 
such a model will be discussed in the next section but the basic 
idea is that it would describe the relationship between 
properties directly extractable from a digital scene image (such 
as colour, shape, texture) to the scene’s restorative potential. If 
successful, the model would enhance our understanding of 
restoration and ART.  

It could, in effect, tell us what makes a scene restorative at a 
detailed visual level, which ART currently does not. The 
question is a profound one and addresses a deep relation 
between humans and the natural world.  
 
This model could also be used practically to evaluate arbitrary 
scenes. Software systems able to automatically evaluate the 
restorative potential of a given image would literally add a new 
dimension to image analysis and selection; if a machine can 
reliably identify them, we might actively use restorative and 
fascinating images in our endeavours, be they website design 
or home decoration. Mobile phone apps presenting images 
predicted to restore might help us meet the challenges of day-
to-day life. In architecture and urban planning, competing 
designs of living spaces might be selected based on restorative 
potential or the rating might even be incorporated into the 
design process itself. Knowing what makes a scene restorative 
could allow the automatic synthesis of fascinating scenes and 
images by computer too. If the relevant visual properties are 
sufficiently abstract, images that are not natural in a figurative 
sense might still restore. It might also be possible to 
objectively determine whether restorative scenes share 
common visual properties with other images considered 
fascinating, such as paintings and other works of art. 
 
But what properties of a scene make it restorative? Its colour, 
shape, texture? The objects present? The scene’s layout, 
organisation and viewing distance? More abstract notions of 
order and complexity? Or perhaps biological properties of our 
visual system? We do not know. ART provides little guidance 
in terms of directly measurable image properties and therefore 
the modelling task will largely be one of hypothesis and 
experiment. This paper will present exploratory work done so 
far in that capacity and is, to the best of our knowledge, the 
first work to combine Computer Vision with Environmental 
Psychology. As such, it would be worthwhile to cover some 
basic background material to allow the experiments described 
in the coming sections to be better appreciated.The model we 
seek will ideally be accurate, intelligible and have high 
explanatory power. It must also be practically feasible given 
the current capability of Computer Vision. These desiderata 
and constraints will inform the following presentation.  
 
Background and Modelling Considerations 

 
From a dataset of n scene images {In} labelled for restorative 
potential y by human subjects, we intend to build a regression 
model of the form shown below, which will predict y for a 
given image I. We do not expect perfect determinism so a 
random error term ϵ is assumed. 
 

y = g(f(I)) + ϵ 
 

    = g(x) + ϵ                            ………………………………… (1) 
 
The dependent variable y is normalised to the range [0, 1] and 
is fixed for a given set of subjects and scene images. The 
image propertiesx which drive restoration, and their exact 
relationship to y, are captured by the functions f and g 
respectively, which embody a combination of image 
processing and machine learning processes. Determining f (and 
therefore x) and g will be the main modelling task here.  
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Images as Data 

 
The function f extracts relevant visual information from an 
image I. Being a rectangular array of pixels, a digital image 
can be considered a matrix, with a value for each pixel. In the 
simplest case of monochrome (intensity) images, the value for 
each pixel is a single number, often ranging from 0-255. For 
colour images, the value of each pixel is usually a vector of 3 
numbers that represent colour component (for example red, 
green, blue).  
 
It is from these raw values that useful information must be 
determined, a task that is deceptively difficult. The average 
human is so effortlessly skilled at interpreting visual data that it 
is often hard to appreciate the sheer difficulty of moving from 
millions of simple retinal cell responses to the conscious 
perception of objects and scenes. Computer Vision researchers 
are faced with this task directly: how do we form any kind of 
high-level interpretation of a giant grid of numbers, especially 
when those numbers are inherently incomplete for the task of 
reconstructing the world (vision is an inverse problem: Ponce 
and Forsythe, 2011). The interested reader may find a 
convincing illustration of the difficulty of the problem in 
Hyvarinen et al (2009). Another challenge is the high 
dimensionality of image data: even a medium resolution 
(640x480) image in 24-bit colour provides almost a million 
values to deal with. This is in contrast to many other branches 
of science where variables are relatively few are and each have 
meaningful interpretations (eg the sampling unit is a person 
and variables are age, height, weight etc.). 
 
Image Descriptors 

 
Considered mathematically, a vast number of functions f could 
be calculated for this matrix of values I, yielding an output x 
which might be scalar, vector or even another image. For 
example, the input image could be reduced to a scalar by 
taking its mean value over all pixels, its vector-valued intensity 
histogram could be calculated, or object edges could be 
identified as locations where intensity changes rapidly, 
yielding a new image consisting of edges alone. These 
examples are intentionally simple; a vast number of image 
processing operations have been developed with inspirations 
that include biological plausibility, a desire to capture visual 
information in a way that humans can understand, and by 
mathematical and more abstract considerations. The nature of f 
and x will depend on the task at hand. For example, if the task 
is to distinguish between certain very simple classes of image, 
intensity or colour histograms may be sufficiently distinctive 
image properties. In these cases, x will often be called an 
image descriptor or feature.  
 
The present task will require the identification of an image 
descriptor that is related to restorative potential.Image 
descriptors are usually vectors and are notable in machine 
learning circles for their high dimensionality which is largely a 
result of the high dimensionality of the underlying image I. It 
is also important to point out that although we would often like 
x to capture image properties with intuitive interpretations, this 
is not always possible. It may be tempting to speculate that, for 
instance, the presence of certain objects drives restoration but it 
may not be currently possible for Computer Vision to reliably 
identify those objects. 

Model Forms 

 
The function g describes how image properties x relate to 
restorative potential y. The relationship might be linear or 
nonlinear and may be embodied as a straightforward 
mathematical function or in more advanced machine learning 
models such as Artificial Neural Networks (ANNs; Haykin, 
2009) or Support Vector Machines (SVMs; ibid). Although a 
considerable amount of scientific research attempts to find 
interpretable linear associations between variables, not all 
relationships of interest are linear or even an easily-
interpretable function. SVMs and ANNs have proven 
remarkable in their ability to discover patterns in high 
dimensional data that are not obvious to either inspection or 
straightforward linear analysis but this comes at a price: 
although in theory SVMs and ANNs can be represented 
mathematically, their structure and the large number of free 
parameters involved make them very hard for people to 
interpret (Gershenfeld, 1998). They are usually treated as a 
black box. 
 
Image Datasets 

 
For a data-driven model, the construction of a dataset {In} of 
scene images labelled with restorative potential y, will be 
crucial. Ideally the dataset would constitute a reasonable 
sample of the relevant image population in both content and 
number. All images should be of high quality and should be 
labelled with a reliable measure of restorative potential by a 
reasonable sample of the relevant population of human 
subjects. Since the image and subject populations are arguably 
“all scenes” and “all people” the task is a huge one. No 
reference image datasets have been made publicly-available by 
any previous ART researchers –and this is a situation in strong 
contrast with Computer Vision research where a large number 
of datasets have been constructed and made available (eg. 
Russell et al., 2005). But even if the images in those datasets 
are usable in terms of content, number and quality, they must 
still be labelled by human subjects with ratings of restorative 
potential andfor this task, the Perceived Restorative Scale 
(Hartig et al., 1997) could be used.However, for manual 
labelling, the requirements of feasible timescale and large 
sample size are of course contradictory. The experiments 
described presently will construct and use datasets that fulfil 
some of the desiderata but as yet no ideal dataset exists. 
 
Desiderata and Constraints 

 
There are many options for x and g and little apriori to guide 
us. However, given our model desiderata, we can prioritise or 
at least evaluate the candidates. It is useful to consider the 
concreteness of the image properties under consideration and 
the explanation of restoration they would suggest. A descriptor 
x might be some measure of a scene’s colour, texture or edges 
and would therefore be directly visual and easy to interpret. Or 
x might attempt to capture the scene’s complexity or 
information content, which, although still derived from visual 
data, would describe more abstract properties and might be less 
easy to interpret. In the extreme, there could be 
mathematically-derived x that might successfully predict 
restoration but are opaque to interpretation; the model would 
be a black box, good for practical use but adding little to an 
explanation of attention restoration. 
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Intelligibility of the image property is a necessary condition for 
it to explain restoration, but it need not be sufficient. To take 
an obvious example of intelligibility: if it were found that a 
scene’s overall level of the colour green caused restoration, 
what would that say about attention restoration as it is currently 
conceptualised? Natural environments often have high green 
content of course, but green in itself has no obvious causal 
power, beyond perhaps evolutionary hard wiring. On the other 
hand, finding that restorative scenes had a certain level of 
order, complexity or information content might give a 
reasonable explanation of why they produce fascination, the 
key component of attention restoration. For example, in scenes 
with a suitable ratio of order to disorder, effortless perception 
might be driven by order but sustained interest might be 
maintained by a certain level of disorder. This would arguably 
be a more satisfying type of explanation and will be addressed 
in more detail in section 6. 
 

So, to summarise: a model with accuracy, intellibility, and 
explanatory power is sought, and is to be achievedwiith the 
current capabilities of Computer Vision. There is no guarantee 
that this will be possible and the endeavour could fail on any 
one of those counts. Before proceeding to the initial modelling 
experiments conducted here, it is first necessary to address a 
crucial assumption made about the whole enterprise. Namely, 
that a model of restorative scenes can be made directly in terms 
of image properties alone. 
 

Assumption of Image Sufficiency 
 
General scene perception is a complex task involving many 
levels of processing and may involve the top-down deployment 
of prior knowledge, task concerns, preferences and conscious 
intentions that go beyond bottom-up response to image 
information as stimulus. Modelling these factors would be an 
immeasurably more difficult task and possibly an 
insurmountable one. This issue relates directly to a key claim 
of ART: that states of fascination are driven bottom-up by 
visual features (Berman, Jonides and Kaplan, 2008). Evidence 
in favour of this claim would be a valuable finding in itself but 
for the purposes of developing a visual model it would serve as 
both direction and encouragement since it would suggest that 
the image contains sufficient information to account for 
attention restoration. This question motivates the first 
experiment presented here. It does not construct a visual model 
but attempts to validate the possibility of one and its findings 
are interesting in their own right.  
 
Computational Attention Models 

 
Initial work on combining Computer Vision and ART used 
computational attention modelling to gather evidence that 
states of fascination are driven bottom-up by visual 
features.The essential idea was to use a bottom-up 
computational model of visual attention to process scenes of 
both natural and built environments and to compare the 
resulting gaze patterns to known patterns measured in humans 
when viewing similar scenes. Since the model is free from both 
top-down task influences and higher-level processes such as 
object recognition, similar gaze patterns would suggest that 
attention restoration requires only a primitive level of 
processing. Marked differences might suggest that higher-level 
processes are at work.  

Restorative Gaze Patterns 

 
It is known how the gaze of humans differs when processing 
high and low restorative scenes.In (Berto et al, 2008) eye 
tracking technology was used to determine whether visual 
perception differs between scenes that are primarily natural or 
built. Eye movements are often taken to reflect both internal 
shifts of attention and the amount of effort employed in the 
viewing of a scene. Subjects were exposed to 50 scenes (25 
natural, 25 built) and their gaze locations were recorded over 
15s of free viewing. Three measures were used to characterise 
the differences in gaze patterns: distance covered in the total 
exploration of the scene, number of fixations and number of 
saccades. A fixation was defined as the gaze location 
remaining constant for >150ms. It was hypothesised that 
distance and number of fixations would be higher for built 
scenes as they are less fascinating and would engage directed 
rather than involuntary attention in a process of greater 
scrutiny. In contrast, participants were expected to scan the 
scenes of nature broadly, but not to attend carefully to any 
particular aspects. The findings of the study confirmed this 
hypothesis: in built scenes significantly greater distance was 
covered and more fixations were made.  
 
Berto et al’s study provides the basic evaluation framework for 
our initial experiment. However, instead of tracking the 
sequence of gaze locations in human subjects, here a computer 
model was used to process the scene and determine locations 
of gaze. Computer modelling of attention is an active research 
area that overlaps with neuroscience and Computer Vision. A 
number of models have been devised ranging from top-down, 
task based to bottom-up entirely. A comprehensive survey can 
be found in Borji and Itti (2013) but here only the particular 
model used in this research will be described in detail. 
 
Saliency-Based Computer Models 

 
Building on the ‘Feature Integration’ theory of Treisman and 
Gelade (1980), Itti, Koch and Neibur (1998) developed a 
saliency-based computer model of selective visual attention 
(hereafter known as IKSM, for Itti and Koch Saliency Model) 
which, when given an image or image sequence, is designed to 
output a sequence of gaze fixation points. Saliency is a 
property related to the ‘pop out’ effect commonly found in 
visual search experiments where an object may be especially 
conspicuous relative to its neighbours because it differs in 
some property. For example, a circle found amongst squares or 
a green triangle amongst red triangles may ‘pop out’ of the 
scene.  
 
In IKSM, saliency is a measure of the conspicuity of an image 
point based purely on local differences in low-level features 
and is embodied within a saliency map, an array of neural 
processing units analogous to the input image whose activity 
encodes saliency for each image point. During operation, a 
process of local competition amongst neurons determines that 
with the highest activation (the ‘winner’) which, as most 
salient, is taken to be the new location of gaze for the next 
time-step. Activation in the saliency map evolves over time in 
response to features of the inputimage sequence and an internal 
biasing mechanism of  inhibition of return (IOR), which 
negatively weights the region in the saliency map centered on 
the current gaze location.  
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This prevents gaze from becoming stuck in a single location 
and enforces a scan of the scene. An example of generated 
gaze locations and the saliency map that produced them is 
given in Figure 1. 
 

 
 

 
 

Figure 1.  Example IKSM sequence of Gaze Locations (top) and 
Saliency Map (bottom)  

 

Within IKSM, information is represented in maps which are 
analogous to the input image, or some function of it. These 
maps are produced by filtering and combining image features. 
The saliency map is the most important map since it ultimately 
determines the gaze fixation point. Inspired by biological 
visual receptors (Ittiand Koch, 2001), local differences are 
considered more important than absolute values and a filter’s 
response at a given location depends on how the value there 
differs from its neighbours. Specifically, the values in each 
feature map are calculated in an approximation to a centre-
surround response, produced by convolving a raw feature map 
with a Gaussian kernel at progressively larger standard 
deviations and differencing between this hierarchy, or 
‘Gaussian pyramid’, of maps.  
 

The features used in calculating saliency are inspired by those 
found in early regions of the human visual cortex (Hubel and 
Wiesel, 1959). Raw features can be either static or time-
dependent. Colour opponency (red/yellow and green/blue), 
orientation and intensity are the most common static features 
and can be calculated from a single image whereas the 
dynamic features of motion and flicker require an image 
sequence for their calculation. Calculation of the centre-
surround response for each of these raw feature mapsis the first 
stage in model execution and is conducted as above. 

Depending on the exact configuration of the visual cortex 
model there may be several feature maps for a feature type (eg. 
for motion, there may be motion left, motion right, up and 
down) so these are combined into a single conspicuity map to 
summarise the total response for the type of feature in 
question.  
 

Conspicuity maps are combined in a similar fashion to form 
the saliency map for this time step and this provides enough 
information to decide the gaze location. A winner-takes-all 
process is used to find the point of highest saliency (or more 
accurately, the neuron in the saliency map array with the 
highest activation) which is the model’s current output. Finally, 
a mechanism of inhibition of return(IOR) negatively weights 
the saliency map in an area centered at the current location of 
gaze so that this location becomes a very unlikely winner at the 
next time-step. Since gaze cannot return to the current location 
until the negative weighting subsides, a serial search of the 
image in order of decreasing saliency is enforced. A schematic 
showing the sequence of operations is found in Figure 2. IKSM 
has been used and cited in a large number of projects and 
publications and has shown to successfully replicate some 
aspects of human gaze allocation (Egner, Itti and Scheir, 2000). 
 

Image Dataset 
 
To allow a direct comparison with the results of Berto et al 
(2008), this experiment would ideally be performed on the 
same scenes used in that study. Unfortunately, said images 
have not been made publicly–available so a popular dataset 
used in Computer Vision research was used instead. 
 

Images for this experiment were taken from the freely-
available ‘8 Scene Categories Dataset’ by the Computer 
Science and Artificial Intelligence Laboratory (CSAIL) at 
MIT1. This dataset was compiled for work on determining the 
spatial envelope, or ‘gist’, of a scene (Oliva and Torralba, 
2001) and has been successfully used to demonstrate objective 
differences between natural and built scenes, making it suitable 
for our current purposes. The images have since been made 
freely-available and have been used as a benchmark in various 
subsequent studies. The dataset consists of 2688 colour 
outdoor images, divided into natural and built scenes, and each 
further divided into 4 subcategories: {coast, mountain, forest, 
open country}, {street, inside city, tall buildings, highways}. 
There are approximately equal numbers of natural and built 
scenes: 1472 and 1216, respectively. This dataset can be 
considered ideal except for one thing: all images are only 
256x256 pixels.Although upscaled to 800x600 for processing 
in this experiment, fine detail and texture are lacking. As stated 
earlier, dataset construction requires balancing competing 
criteria of content, size and quality and it was hoped that the 
available image detail and texture were sufficient. 
 

Apparatus 
 
The technical computing environment Matlab (release 2013b) 
provided the basic software infrastructure used in this 
experiment. Functions from the image processing, optimisation 
and statistics toolboxes were utilised at pre-and and                    
post-processing stages. 

                                                 
1
http://people.csail.mit.edu/torralba/code/spatialenvelope/ 
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Calculation of the gaze locations for a given scene was 
performed by the freely-available Saliency Toolbox (STB)2, a 
Matlab implementation of IKSM (Walther, 2006). The 
Saliency Toolbox accepts an input scene image and then 
evolves a saliency map for it, outputting a sequence of n gaze 
locations and the time in ms that each location is attended to, 
i.e. a list of triples {x0 y0 t0;  x1 y1 t1,…,xn yn tn}. The number n 
of gaze locations, and the time between them, varies with each 
scene, according to its particular saliency map. The spatial 
coordinates in the output are in the coordinate frame of the 
image itself and therefore vary from 0-799 in the x-dimension 
and from 0-599 in the y-dimension. The machine used to 
conduct this experiment was a Dell Optiplex 990, with an Intel 
Core i3-2100 CPU running at 3.1 GHz and with 4GB RAM. 
For images of the resolution used here, the Saliency Toolbox 
does not run in realtime and total processing time for all 2688 
images was approximately 30 hours. 

                                                 
2
http://www.saliencytoolbox.net/ 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Procedures and Measures 

 
To allow comparison between the results obtained by computer 
modelling and those from Berto et al’s study of human 
attention patterns, the same presentation time of images and 
measures were used. The Saliency Toolbox was set to process 
each image in the dataset for 15s, and the sequence of gaze 
locations was extracted. After all images were processed, 
measures of total distance, number of fixations and number of 
saccades were calculated and their statistics analysed. Due to 
the differences in experimental design between Berto et al’s 
work and the current study, certain modifications to the 
measures were needed. However, these differences are of 
measurement scale and would not affect any relative 
differences in observations between natural and built scenes.  
 
Berto et al’s distance measurement was calculated in pixels 
first and then converted to visual angles (degrees), which is a 
straightforward conversion when a real observer and screen are 
used and their relative distances measurable. In this work there 
is no real observer so distance was maintained in units of 
pixels.  

 
 

Figure 2. Schematic of Itti and Koch Saliency Model (Itti, Koch & Neibur, 1998) 
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The Euclidean distance was used in the distance calculation. 
Fixations were considered to occur when gaze stayed at the 
same location for more than 150ms, as per Berto et al’s study.  
Human saccades can be small, fast and frequent (Berto et al 
measured approximately 100 saccades in 15s). IKSM (and 
therefore the Saliency Toolbox) does not model such fine eye 
movements. Here, saccades are taken to occur when gaze 
changes location significantly and the absolute number of 
modelled saccades is likely to be lower than those found in 
humans. However, comparison of relative saccade counts was 
still expected to be informative. 
 

RESULTS 
 
Processing of scene images yielded sequences of gaze 
fixations, examples of which are shown in Figure 3. The mean 
distance and number of fixations and saccades were calculated 
for all 2688 scenes, across both the nature and built categories 
and are shown in Table 1 below. 
 

Table 1. Mean Distance, Fixations and Saccades for Natural and 
Built Scenes  

 

 Mean Distance (pixels) Mean Fixations Mean Saccades 

Natural 
Scenes 

10313.6 
(SD 447.2) 

31.4 
(SD 8.1) 

38.5 
(SD 11.5) 

Built 
Scenes 

11125.1 
(SD135.8) 

33.1 
(SD 7.5) 

41.2 
(SD 10.8) 

More distance was covered when viewing the built scenes, 
with a mean distance of 11125.1 pixels (SD 3135.8), whereas 
viewing the natural scenes covered a mean distance of 10313.6 
pixels (SD  3447.2). An independent samples t-test showed the 
differences in distance for natural and built scenes to be 
significant: t(2686) = -6.32, p << 0.0001. This is consistent 
with Berto et al’s findings for human subjects. A greater 
number of fixations were measured in the built scenes, with a 
mean of 33.1 (SD 7.5) compared to 31.4 (SD 8.1) fixations in 
nature scenes. This difference in fixations for nature and built 
scenes was also found to be significant: t(2686) = -5.63, p << 
0.0001. Again, this is consistent with Berto et al’s study of 
human performance with the same types of stimuli. 
 
Finally, a greater number of saccades were generated in the 
built scenes than the nature scenes: 41.2 (SD 10.8) ad 38.5 (SD 
11.5) respectively. An independent samples t-test also showed 
this difference to be significant: t(2686) = -6.07, p << 0.0001. 
Berto et al’s study found no significant difference in saccades 
during human exploration of scenes but the result here may be 
due to IKSM not modelling fine saccades. Berto et al do not 
appear to consider saccades to be as important as distance and 
fixation count in demonstrating fascination. 
 

DISCUSSION 
 
The result that a relatively simple bottom-up computer model 
of early stage vision and attention showed similar gaze 
statistics to humans when viewing fascinating scenes was 
surprisingbut is consistent with the ART claim that states of 
fascination associated with attention restoration are essentially 
stimulus-driven. Further investigation is necessary but the 
findings give encouragement to the idea that a model of 
restorative scenes based exclusively on image information 
might be possible.In the coming sections, a number of 
approaches to such a model will be described.The first is 
motivated by the experiment just presented in its use of 
biologically-inspired processing of visual scenes. 
 
Biologically-Inspired Models 

 
Attention restoration is a human phenomenon and, since our 
responses to stimuli are a product of both the properties of the 
stimulus itself and of the particular characteristics of our 
perceptual system, it is reasonable to first explore models 
inspired by biological visual systems.Being bottom-up and 
biologically-inspired, Itti and Koch’s saliency-based model of 
visual attention (IKSM) just discussed,is appropriate for the 
task at hand.It will be explored here as a source of visual 
descriptorsable to characterise a scene’s restorative potential. 
Specifically, the conspicuity maps for colour, intensity and 
orientation, described in 3.2 will be used. Another candidate 
model is HMAX by Riesenhuber and Poggio (1999),a 
physiologically-plausible computational model of object 
recognition in cortex, intended to explain cognitive phenomena 
in terms of simple and well-understood computational 
processes. HMAX is a purely feedforward model and has been 
shown capable of capturing the invariance properties and shape 
tuning of neurons in macaque inferotemporal cortex. Like 
IKSM, HMAX is explored for its potential to provide visual 
descriptors.  
 

 
 

 
 

Figure 3.  Example IKSM Gaze Sequences on Natural (top) 
and Built Scenes (bottom)  
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The general approach used here will be to i) build a dataset of 
scenes rated for restorative potential by human subjects ii) 
validate the ratings by testing whether they actually do produce 
restoration, iii) extract features from the labelled scenes using 
HMAX and IKSM and train regression models using them, iv) 
predict the restorative potential of unseen scenes, and v) test 
whether the predictions do produce restoration. 
 
Image Dataset 

 
As in 3.3, the 2688 image ‘8 Scene Categories’ dataset was 
used here.  However for modelling, human rating for 
restorative potential is required. A subset of 72 scenes was 
manually selected from the master dataset in a way intended to 
provide coverage of natural vs built and the potential for 
restorative vs nonrestorative scenes. These 72 images were 
supplemented with a further 8 scenes of industrial views, taken 
from the web, which the source dataset was considered to lack. 
The 80 images were then rated and validedby humans online 
using a custom system built in PHP, Javascript and MySQL. 
 

Image Rating using PRS 
 
15 Malaysian undergraduates (8 male, 7 female, aged 23-25) 
were given the Perceived Restorativeness Scale (PRS) and 
asked to rate each of the 80 scenes. The results of the rating are 
shown in Figure 5overleaf. Ratings for images in each row of 
the figure increase from left to right and each row is a 
continuation of the previous one. Inspection demonstrates that 
the subjects did not simply distinguish between natural and 
built scenes. Some natural scenes have low ratings and some 
built scenes are rated as moderate-to-highly restorative. This is 
consistent with the ART literature and suggests that finding 
features to capture the distinction between scenes with high 
and low restorative potential may be challenging.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Natural scenes with low ratings appear to lack openness and 
their texture and organisation is somewhat chaotic. Built 
scenes rated highest display a higher level of organisation. 
Symmetry and structure may be important and it is interesting 
to note that the subjects responded to the buildings even though 
the style of architecture is not familiar, suggesting that personal 
associations may be less important here. 
 
Validation of Ratings using SART 

 
To ensure that the ratings reflected genuine restorative 
potential, validation was carried out following the ‘SART-
slideshow-SART’ protocol described in Berto (2005). The 25 
top and 25 bottom rated images from the 80 were selected for 
the slideshow. Paired t-tests on each of the four performance 
measures across sessions 1 and 2 were conducted. Table 2 
shows the means and standard deviations of the four measures 
and the significance level of differences between sessions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. HMAX General Architecture (Riesenhuber and Poggio, 1999) 

 

Table 2. Mean and std dev (parentheses) for d’, reaction 
time, numbers of correct and incorrect responses between 
sessions and across images rated high and low on the PRS 

 
  Session High Rated Low Rated 

d' 1 2.18 (.95) 2.46 (.48) 
 2 2.61 (.79) 2.10 (.66) 
p  < 0.5 < 0.5 
RT (ms) 1 282.73 (48.24) 289.60 (32.95) 
 2 302.36 (50.40) 286.30 (34.09) 
p  < 0.5 ns 
Correct 1 10.18 (5.62) 11.80 (3.77) 
 2 13.36 (4.78) 9.20 (4.32) 
p  < 0.5 < 0.5 
Incorrect 1 1.82 (3.31) 1.10 (1.91) 
 2 1.64 (3.35) 1.70 (2.06) 
p  ns ns 

 

International Journal of Recent Advances in Multidisciplinary Research                                                                                0615  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: 80 scenes arranged row-wise in order of Perceived Restorativeness 
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Figure 6. Scenes predicted to have low (top half) and high (bottom half) restorative potential  by (columns) i) HMAX with linear SVM kernel, ii) Conspicuity Maps with 
polynomial kernel and iii) HMAX with polynomial kernel 
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Subjects viewing images rated high on the PRS demonstrated a 
significant increase in d’ and number of correct responses, and 
significant decreases were found in the same measures after 
viewing the low-rated scenes. This is consistent with (Berto, 
2005) and, small sample size notwithstanding, we will consider 
the dataset validated for the initial experiments performed here. 

 
Model Construction 

 
The dataset was used to learn a regression model intended 
to be capable of predicting the restorative potential of a 
given image. Matlab provided the basic software 
infrastructure used in these experiments. Functions from the 
image processing, optimisation and statistics toolboxes were 
utilised at pre-and and post-processing stages. The freely-
available Saliency Toolbox (STB), a Matlab implementation of 
IKSM (Walther and Koch, 2006) was used to calculate and 
extract conspicuity maps (CM) for colour, intensity and 
orientation, which were combined into a single vector of 
768 components for each image. A basic implementation of 
HMAX, hmin (hmin, 2014) was used in the same manner to 
calculate feature vectors of 8150 components. The 
pretrained dictionary of S2 features included with hmin 
was used in the calculations but by default no colour 
information was used. Both types of feature vectors were 
fed into the freely-available SVM library libSVM (libSVM, 
2014) training in nu-SVR regression mode. Linear, 
polynomial, RBF and sigmoid kernels were trained.  
 
Model Predictions and Validation 

 
After training, the full 2688 images (minus the 72 training 
images) of the ‘8 Scene Categories’ dataset were processed 
and the trained models were used to predict the level of 
restorative potential for each scene. The following three 
feature/kernel combinations were manually chosen for 
study based on inspection of their output: i) HMAX with a 
linear kernel, ii) CM with a polynomial kernel and iii) 
HMAX with a polynomial kernel. The results for the top 
and bottom 25 ratings for each combination are shown in 
Figure 6 (overleaf). 
 
Inspection shows that each feature/kernel combination has 
captured a different aspect of the groundtruth. HMAX with 
a linear kernel makes a clear distinction between built and 
natural scenes. It appears to have associated high levels of 
activity in neurons trained to respond to to bar-like stimuli 
with low levels of restorativeness and is therefore biased 
towards scenes of skyscrapers. However, it has not 
captured the low restorative natural scenes or the high 
restorative built scenes. CM with a polynomial kernel is 
mixedalthough there is a bias towards open nature in the 
high-rated scenes. Interestingly, although no sunsets were 
in the training dataset, it predicts them as highly 
restorative. This is not currently understood. HMAX with a 
polynomial kernel focusses on a distinction between 
spaciousness and detailed natural texture. Whether the 
emptiness of the low-rated scenes and the busy texture of 
the high-rated scenes is appropriate remains to be seen. 
Manual inspection may yield insight but the only way to 
verify how successful these predictions are is to test them for 
restorativeness.  

The predictions made by each setup were validated using the 
same SART-slideshow-SART protocol used in constructing the 
groundtruth.Evidence of restoration,in terms of improved 
correctness and reaction time, was found only in the the 
HMAX/Linear SVM combination (shown in Table 3) for high-
restorative scenes. The other two models showed no significant 
differences in any of the measures between sessions. 
 
The HMAX/Linear SVM combination appears to have 
captured something and the results are based on predictions 
from a large dataset and actual testing on human subjects rather 
than statistical measures of model quality. However, 
understanding exactly what has been captured is challenging: 
although biologically-inspired features can have the advantage 
of greater plausibility when modelling human phenomena, 
high-dimensional feature vectors consisting of individual cell 
responses are harder to interpret than higher-level image 
processing descriptors such as colour, shape and texture, or 
mathematical properties such as entropy and complexity. This 
is especially true when advanced learning models like SVMs 
are used. Currently the model functions as a black box that 
provides little in the way of explanation.  Another shortcoming 
of this experiment is that the images used were only of 
adequate rather than high quality, withinsufficient resolution to 
capture finer details of texture and pattern.This was 
commented on by subjects during the human rating of images. 
These deficiencies in interpretibility and image quality inspired 
the next experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Higher-level Image Descriptors 
 
The main goal of this experiment was to exploremodel 
interpretability; specifically, whether higher-level scene 
descriptors could capture restorative potential in more intuitive 
visual terms and whether a straightforward linear association 
would be discovered. In contrast with the previous experiment, 
a smaller dataset of superior visual quality was used and 
standard statistical measures were used to assess model quality. 
 
Image Descriptors 
 
The 9 image descriptors chosen here attempt to capture 
distinctive patterns in colour, texture, edge content, 
directionality, and layout. They each yield a histogram for an 
input image, which may be considered as a vector for machine 
learning purposes. Histograms have proved their worth in the 
context of content-based inexing and retrieval (CBIR), where 
they are a common descriptor used to represent global features  

 

Table 3. Performance measures for images predicted high 
and low by HMAX/Linear SVM 

 
 Session Low Rated High Rated 

d' 1 2.63 (0.58) 2.53 (0.84) 
 2 2.80 (0.62) 2.78 (0.73) 
p  ns ns 
RT (ms) 1 322.6 (80.5) 330.4 (92.0) 
 2 334.0 (82.4) 312.8 (89.0) 
p  ns < 0.5 
Correct 1 12.73 (4.31) 11.60 (5.83) 
 2 14.18 (4.33) 13.60 (5.66) 
p  ns < 0.5 
Incorrect 1 0.73 (0.90) 0.80 (1.32) 
 2 0.82 (1.54) 0.80 (0.79) 
p  ns ns 
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Figure 7. 32 Super high-resolution scenes arranged row-wise in order of Perceived Restorativeness 
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Of an image since they are invariant to translation and rotation 
and, when normalised, scale invariant. The desciptors used here 
are as follows: 
 
 Colour histogram in RGB colour space  
 Scalable Colour Descriptor (Chang, Sikora and Puri, 2001) 
 Colour Layout Descriptor (Chang, Sikora and Puri, 2001) 
 Edge Histogram (Chang, Sikora and Puri, 2001) 
 Tamura Texture Features (Tamura, Mori and Yamawaki, 

1978) 
 Colour and Edge Directivity Descriptor (CEDD; 

Chatzichristofis and Boutali, 2008).  
 Fuzzy Colour and Texture Histogram (FCTH; 

Chatzichristofis and Boutali, 2008).  
 Auto Colour Correlation Feature. (Huang et al, 1997) 
 Gist (Oliva and Torralba, 2001) 
 
Descriptors i) – iv) are considered significant enough to be part 
of the worldwide MPEG-7 standard for representing visual 
content in digital video. Descriptor ix): the ‘Gist’, or ‘spatial 
envelope’ descriptor, was briefly introduced in the  
 
section 3.3. Inspired by the human ability to quickly categorise 
scenes from coarse, low-resolution images (Oliva and 
Torralba, 2001), Gistwas developed to capture image energy 
across orientations, scales and locations in a relatively low-
dimensional manner. It has been successfully used in human 
scene perception studies and in CBIR applications. 
 

Image Dataset 
 
The scene image dataset used consisted of 32 super high-
resolution  (≥ 1920x1080 pixels) scenes manually selected 
from the web. Nature scenes and built scenes were in the ratio 
1:1and the scenes selected were intended to represent both high 
and low fascination environments in each category. The dataset 
was evaluated and labelled for restorative potential using the 
Perceived Restorativeness Scale (PRS) by 15 Malaysian 
students aged 20-22. Shown in figure 7 are the 32 scenes and 
their overall PRS score. They are arranged according to their 
PRS ranking: top-left is lowest and bottom-right is highest. As 
was the case for the image ratings in the previous experiment, 
natural scenes are generally highest-rated but some built scenes 
are also rated highly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Model Construction and Results 

 
Matlab and freely-available software libraries were used to 
process the 32 dataset images. The Java LIRE library (Lire, 
2014) was used for descriptors i) – viii) and gist was calculated 
using its CSAIL implementation (Gist, 2014). A multiple linear 
regression model was then fit for each descriptor, with results 
shown in table 4 below. Before fitting the model, histogram 
components that were not significantly (p <0.05) correlated 
with restorative potential were rejected, reducing the 
dimensionality of each descriptor for reasons of accuracy and 
the number of free parameters vs dataset size available. In 
Table 4, n is the original number of histogram components and 
nsub is the remaining subset. It is clear that each descriptor 
contained mostly uncorrelated components. Two extreme cases 
were found: the Tamura texture descriptor had no correlated 
components and the ACC was found to have more than the 
available free parameters in the model, yielding no possible fit 
and a perfect fit, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Taking into account MSE, R2 and p-values, it can be seen that 
only the Edge Histogram and Gist models givea good overall 
fit to the data, and this is in intuitive agreement with inspection 
when model predictions are plotted against human ratings in 
figure 8. To interpret these results in visually-meaningful terms 
it is necessary to considerthe edge histogram and gist 
descriptor in a little more detail.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Model Fit Results for 9 Descriptors 
 

Descriptor n nsub MSE R2 p 

Colour 
Histogram 

512 17 0.011 0.611 0.316 

Scalable 
Colour 

64 7 0.014 0.493 0.012 

Colour 
Layout 

120 3 0.017 0.412 0.001 

Edge 
Histogram 

80 23 0.003 0.875 0.096 

Tamura 18 0 - - - 
CEDD 144 14 0.012 0.583 0.147 
FCTH 192 10 0.013 0.523 0.028 
ACC 1024 125 0 1 0 
Gist 512 16 0.008 0.732 0.038 

 
 

Figure 8. Predicted (blue) and Human-rated (red) Restorative Potential for 32 images 
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It has been long known that the detection of edges within an 
image is an important part of human vision, providing the raw 
material for shape and object perception (Hubel and Wesel, 
1959). Essentially, the Edge Histogram descriptor describes the 
relative proportions, across image scales, of five types of 
edges, differentiated by their direction. The five edge types are 
shown below and can be broadly divided into 
vertical/horizontal (a-b) vs diagonal/non directional (c-e). 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
Analysis showed that the particular edge types correlated with 
restorative potential in this experiment were exclusively 
diagonal/non directional. These findingsare consistent with the 
everyday observation that modern city scenes are dominated by 
vertical and horizontal lines in a way that natural scenes 
generally are not. But the situation is perhaps not as simple as 
nature vs built: the dataset constructed here contained several 
highly-rated built scenes that are also not exclusively vertical 
and horizontal lines. The model was able to successfully 
predict their high restorative potential on this basis alone. It is 
worth noting that these buildings are in an older style of 
architecture with more curves, detail and complex patterns.  
 

A shortcoming of the edge histogram is that variation in edge 
content at different locations in a scene is lost. The Gist 
descriptor does not measure edges directly but rather the image 
energy at various orientations, and analysis also showed that 
the orientations correlated with restoration were exclusively 
diagonal. Unlike the edge histogram, Gist has the advantage 
that it can also show the locations that distinguish restorative 
from non-restorative scenes. It was found that the presence of 
strong image energy oriented diagonally across the bottom 
quarter of the scene was most highly correlated with restorative 
potential.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We find these results intriguing and encouraging but cannot 
consider them a convincing explanation yet. We conjecture 
that this result is actually a side effect of more profound and 
abstract properties that restorative environments possess which 
would also explain why it is possible for certain non-nature 
scenes to restore. This belief is explored in the final 
experiments performed in this paper.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These are currently the least developed and successful, but are, 
in our opinion, the most interesting and the best direction for 
future work. 
 

Abstract Scene Properties 
 
Order and Complexity 
 
According to ART, fascinating scenes maintain sustained 
attentional engagement, but with minimal perceptual effort. 
The scene properties promoting this might be understood in 
terms of a balance between order and disorder. The element of 
order might allow minimal effort and element of disorder 
might provide uncertainty and continued interest. However, 
extreme order might be easy to perceive but quickly digested 
and unlikely to sustain attention andextreme disorder might 
require effort to make sense of and could be repulsive for that 
reason. Fascination would require a balance. Following 
(Grassberger, 1989), example extremes of order and disorder 
are illustrated in figure 10.The figure also shows a putative 
relationship between order and complexity;an appropriate 
balance between order and disorder is manifested as high 
complexity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Five types of edges in the Edge Histogram descriptor (Park, Jeon & Won, 2000) 

 

 
 

Figure 10. Examples of Ordered and Disordered Stimuli (Grassberger, 1989). Plus graph of complexity vs disorder 
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We believe that restorative scenes may have this balance, and 
therefore high complexity. To explore this hypothesis, it will 
be necessary to measure the order of an image, which is no 
simple task. In all that follows, the image dataset and ratings 
constructed in 5.2 will be used. 
 

Symmetry 
 
Order is a relationship between parts and a key manifestation 
of order is the presence of symmetry (Badii and Politi, 1999). 
Parts of a system are related to each other through simple 
transformations – they are similar to each other by reflectionor 
rotation, demonstrating harmony rather than disorder. The 
automatic detection of symmetries in images is a currently 
active problem inComputer Vision, though highly-challenging 
when applied to real-world images. Loy and Eklundh (2006) 
presents analgorithm for detecting local symmetry based on 
properties of the influential SIFT (Scale-Invariant Feature 
Transform) descriptor. The details of the algorithm are beyond 
the scope of this paper but its example output is illustrated in 
Figure 11. 
 

The algorithm accepts an arbitrary image as input and attempts 
to identify the presence of both rotational and reflectional 
symmetry, showing lines of reflection and centres of rotation, 
each with an associated confidence level. A Matlab 
implementation (Symmetry, 2014) of this algorithm is freely-
available and was used here to process the 32 images. A simple 
descriptor based on the algorithm output was the average of all 
detected instances of symmetry, weighted by their confidence 
level. No significant association with restorative potential was 
found. Inspection revealed that the current performance of 
symmetry detectors is simply inadequate for the task here. 
 

 
 

 
 

Figure 11. Examples of reflectional symmetry detected in the 
dataset 

Self-Similarity 
 
Related to symmetry is self-similarity, another manifestation of 
order (Brown and Liebovitch, 2010). In mathematics, a self-
similar object is exactly or approximately similar to a part of 
itself (i.e. the whole has the same shape as one or more of the 
parts). Many objects in the real world, such as coastlines, are 
statistically self-similar: parts of them show the same statistical 
properties at many scales and self-similarity is a defining 
property of fractals (ibid). A commonly-used measure of the 
self-similarity of a shape is the Hausdorff dimension. Straight 
lines have Hausdorff dimension 1 but fractals and more 
interestingand complex shapes are associated with higher 
values. The dataset images were first segmented by a popular 
algorithm (Shi and Malik, 2000) to reveal some approximation 
to the shapes therein. See below for an example contour 
identified for the bottom scene in Figure 11. 
 

 
Figure 12. Example of scene shape contours determined by 

segmentation. This one has Hausdorff dimension 1.17 
 
Then a Matlab implementation of the Hausdorff dimension for 
images was used to process the contour of each segment, and 
The average taken over all segments in the scene.Again, no 
correlation with restorative potential was found. This is also 
likely to be due to current deficiencies in segmentation 
algorithms. 
 
Perception, Uncertainty and Information  
 
A complementary way to interpret ideas of order and 
complexity is in terms of uncertainty and information. States of 
a totally ordered system are completely certain and therefore 
observation yields no information since its state could be 
completely predicted beforehand. In contrast, observing 
systems with high disorder yields high information since their 
state cannot be predicted before time. Situations between these 
two extremes can reflect different levels of perceptual effort 
and interest. Appropriate levels of uncertainty (and therefore 
information) in a scene can be mysterious and engage 
sustained attention if not too much effort is required. The 
change of perspective from order to information is useful 
because it lends itself to the consideration of scene 
perceptionand attention as a process of reducing uncertainty 
about what is there in a scene. At the start, we may know 
nothing about the scene and our uncertainty is total, but each 
glance provides new information and uncertainty is reduced to 
a level acceptable for our current purposes. Among other 
things, the content and the structure of the scene determine 
how much information is available and how it is revealed to an 
observer. 
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We believe that fascinating scenes possess moderate levels of 
information and reveal it at a steady rate. In other words, the 
more one looks, the more is seen. Mathematical information 
theory gives us a means to formalise an approximation to these 
ideas and explore this hypothesis. Although mathematical 
information does not capture everything one would intuitively 
mean by the term, it does reflect some important aspects of 
perception and communication in terms of probability 
distributions. In mathematical terms, the information content of 
a stimulus (signal, image) received by an observer increases 
with its uncertainty. 
 
This final experimentis based on work by Rigau et al. (2008) in 
the computational characterisation of fine art aesthetics. It will 
capture scene structure and diversity in information-theoretic 
terms. For some scene property of interest such as colour or 
texture, we may ask how much information a given local 
region provides about that property for the scene as a whole. If 
the scene is not very diverse then most regions will predict the 
global property well, but if diversity is high then most regions 
will not. The technical details of the method used here can be 
found in (Rigau et al, 2008) but the basic idea is that the a 
visual property such as colour or texture is chosen and a scene 
image is be successively divided in half in such a way as to 
maximise the information the segments created provide about 
the property for the scene as a whole. If a scene is not diverse, 
it contains little information, and this process will finish 
quickly since all regions are similar. If a scene is diverse it will 
have much information to give and the segmentation process 
will take a long time. The key point is that associated with each 
stage in the segmentation process is the proportion of total 
information known so far to total information available. 
Therefore, the rate of information acquisition can be found for 
any given image and we could therefore ask two 
complementary questions about the segmentation process: how 
much of the total image information has been acquired after the 
nth segmentation or how many segmentations does it take to 
acquire x% of it? The answers will be different for different 
images and therefore offer a means to compare how different 
images might be perceived in terms of information, and 
potentially their restorative potential.  
 
We custom implemented the method of Rigau et al in Matlab 
and processed the image dataset to segment each image on 
histograms for each of the 9 image properties described in 
section 5. Some examples of the segmentation and the varying 
information rate revealed are shown in Figure 13 below. 
 

 
 

Figure 13. Example of information-theoretic segmentation for 20 
segments on intensity histogram. The amounts of total 

information revealed at this stage are 40% and 53% respectively 
 
Unfortunately, no significant associations between the 
percentages of information revealed with this method and 
restorative potential were found.  

We are currently in the process of extending Rigau et al’s 
method with IKSM to only include actual locations of attention 
instead of the whole scene, since humans often do not attend to 
all available information. It is hoped that improvements will be 
found. 
 
Conclusions and Future Work 

 
This paper has decribed the early stages of work in a novel,but 
potentially significant,area.The results presented here are 
encouraging but suggestive rather than definitive. There are 
manymore options for developing a visual model of restorative 
scenes and work to improve all the preceding in terms of 
method and analysis is ongoing.  
 
There is exploration too of other ways in which computing and 
technology can contribute to ART. The state of fascination 
which is so central to attention restoration is little-understood 
and no method of directly measuring it has been developed. So 
far, only the relevant subscale of the PRS provides any means 
of measuring fascination but this is from self-report about 
scene properties and not the subject’s inner state. We are 
developing a method to directly measure the three components 
of fascination, as distilled by Joye et al (2013): attentional 
engagement, positive affect, and effortlessness. Eye tracking 
technology will be used to measure attentional engagement (by 
scanpath analysis) and effort (through pupil size), and EEG 
analysis for emotional valence and arousal. If successful, the 
PRS could be supplemented or superseded and faster rating of 
images might be possible.  
 
Work is also underway to extend Itti and Koch’s system to 
directly model the fatigue of directed attention, a feature 
missing from all known computational models of attention. It 
is hoped that this will allow a grounded extension of ART 
which may be of value to both computational modelling and 
Environmental Psychology. As a pilot study the work 
presented here may be considered successful and the main 
hope is that it will stimulate other researchers to join us and 
improve it. This is only the beginning, but in the future 
Environmental Psychology might seek to use Computer Vision 
techniques more and Computer Vision researchers will be 
challenged to develop methods to meet these new demands. 
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