

International Journal of Recent Advances in Multidisciplinary Research Vol. 02, Issue 02, pp.0199-0205, February, 2015

Research Article

GRÜNEISEN PARAMETER AND ITS HIGHER DERIVATIVES FOR Pt, Fe, V AND Nb USING EQUATIONS OF STATE

*Singh, R. S. and Deepti Sahrawat

Department of Physics, Faculty of Science, Jai Naraian Vyas University, Jodhpur, Rajasthan

ARTICLE INFO

ABSTRACT

Article History: Received 27th November, 2014 Received in revised form 05th December, 2014 Accepted 09th January, 2015 Published online 28st February, 2015

Keywords:

Equation of State, Bulk Modulus, Grüneisen parameter, Metals and Thermo-elastic properties.

INTRODUCTION

metals Platinum, Iron, Vanadium and Niobium using free volume theory. We have used some of the most reliable high pressure equation of state (EOS) to determine the thermo-elastic parameter and its higher order volume derivatives based on the generalized free volume theory. We have used two EOS's (a) Stacey Reciprocal K-primed EOS, (b) Kushwah Logarithmic EOS to find the Grüneisen parameter and its volume derivatives for metals at different values of compression from (1.0 to 0.5). The results for thermo-elastic parameters show systematic variations.

We have calculated the high pressure properties, Grüneisen parameter and its volume derivatives of

Foinr understanding the high pressure - high temperature behaviour of solids, it is necessary to have a reliable knowledge of pressure – volume – temperature relationships (Anderson, 1995). For this purpose an equation of state (EOS) can be used with the help of different approaches, one of them is based on the Mie – Grüneisen – Debye (MGD) model for evaluating the thermal effects in order to determine P –V relationships at high temperatures (Speziale *et al.*, 2001; Dorogokupets and Dewaele, 2007 and Dorogokupets and Oganov, 2007). In the reduction of shock-wave data to isothermal data, the knowledge of pressure dependence of the Grüneisen parameter is very useful. Studies on equation of state (EOS) are of central importance for predicting thermo elastic properties of materials at high pressures (Anderson, 1995; Stacey and Davis, 2004 and Stacey, 2005).

The Grüneisen parameter (γ) provides a useful link between thermal and elastic properties (Kushwah *et al.*, 2003; Shanker *et al.*, 2009 and Kushwah and Bhardwaj, 2010). The Grüneisen parameter γ and its volume derivatives q and λ can be determined with help of pressure derivatives of bulk modulus (Shanker and Singh, 2005 and Shanker *et al.*, 2009) using the free volume theory. The volume variation of Grüneisen parameter (γ) is very important in theoretical equation of state, geophysical models, ultrasonic measurements and melting of solids. The Grüneisen parameter (γ) has considerable appeal to geophysicists because it is an approximately constant, dimensionless parameter that varies slowly as a function of pressure and temperature (Rai *et al.*, 2010 and Vashchenko and Zubarev, 1963). In the present study, we determine the Grüneisen parameter γ and its volume derivatives q and λ for metals Pt, Fe, V and Nb at different values of compression down to V/V_0 (1.0 to 0.5).

We have used the Stacey reciprocal K- primed (Stacey, 2000) and Kushwah generalized logarithmic EOS (Kushwah *et al.*, 2007). These EOS have been found to satisfy thermodynamic constraints for material. The results have been found to good agreement with the stacey EOS (Kushwah *et al.*, 2007 and Shrivastava, 2009). The free volume theory has been applied successfully by Holzapfel *et al.* (2001) to investigate the volume dependence of γ in case of different metals. The free volume theory is based on the fundamental relationship between thermal pressure and thermal energy and therefore it is applicable for metals.

***Corresponding author:** Singh, R. S. Department of Physics, Faculty of Science, Jai Naraian Vyas University, Jodhpur, Rajasthan

International Journal of Recent Advances in Multidisciplinary Research

Theory

The most important parameters providing connection between thermal and elastic properties is the Grüneisen parameter (Anderson, 1995)

$$\gamma = \frac{\alpha K_T}{\rho C_V} = \frac{\alpha K_S}{\rho C_P} \tag{1}$$

Where α is the thermal expansivity, ρ is density, K_T and K_S are isothermal and adiabatic bulk moduli, C_V and C_P are specific heats at constant volume and constant pressure, respectively. The higher order Grüneisen parameters are defined as (Stacey, 2005 and Shanker and Singh, 2005)

$$q = \left[\frac{d\ln\gamma}{d\ln V}\right]_{T} = -\frac{K}{\gamma} \left[\frac{d\gamma}{dP}\right]_{T}$$
(2)

$$\lambda = \left[\frac{d\ln q}{d\ln V}\right]_T = -\frac{K}{q} \left[\frac{dq}{dP}\right]_T \tag{3}$$

According to the generalized free volume theory (Stacey and Davis, 2004 and Vashchenko and Zubarev, 1963), we have the following expression for the Grüneisen parameter

$$\gamma = \frac{(K'/2) - (1/6) - (f/3)(1 - (1/3)(P/K))}{1 - 2f(1/3)(P/K)}$$
(4)

It can also be written as

_

$$\gamma = \frac{K'}{2} - \frac{1}{6} - \varepsilon$$

Where

K = bulk modulus
 K' = first derivative of bulk modulus
 K" = second derivative of bulk modulus

$$\varepsilon = \frac{f\left(K - K'P\right)}{\left(3K - 2fP\right)} \tag{5}$$

The following expressions are obtained from the differentiation of eq. (4)

$$q\gamma = -\frac{KK''}{2} + K\frac{d\varepsilon}{dP}$$
(6)

and

$$\gamma q \left(q + \lambda\right) = \frac{K'KK''}{2} + \frac{K^2K'''}{2} - KK'\frac{d\varepsilon}{dP} - K^2\frac{d^2\varepsilon}{dP^2}$$
(7)

Where the pressure derivatives of ε obtained from eq. (5) as follows

International Journal of Recent Advances in Multidisciplinary Research

$$\frac{d\varepsilon}{dP} = -\frac{\left[fK''P + \varepsilon\left(3K' - 2f\right)\right]}{\left(3K - 2fP\right)} \tag{8}$$

And

$$\frac{d^{2}\varepsilon}{dP^{2}} = -\frac{\left[fK'''P + fK'' + 3\varepsilon K'' + 2(3K' - 2f)(d\varepsilon/dP)\right]}{(3K - 2fP)}$$

$$q + \lambda = -K' - \left[\frac{\left(\frac{K^{2}K''}{KK''}\right) - \left(\frac{2K}{K''}\right)\left(\frac{d^{2}\varepsilon}{dP^{2}}\right)}{1 - \left(\frac{2}{K''}\right)\left(\frac{d\varepsilon}{dP}\right)}\right]$$

$$(10)$$

Where

$$K'' = \frac{d^2 K}{dP^2}, \ K''' = \frac{d^3 K}{dP^3} \ and \ \varepsilon = \frac{f(K - K'P)}{(3K - 2fP)}$$
 (11)

Values of $d\varepsilon/dP$ and $d^2\varepsilon/dP^2$ appearing in eq.'s (6) and (7) can be determined by differentiating eq. (11) with respect to pressure P by taking a constant value of parameter f for different metals. It is evident from eq.'s (4)-(11) that the basic quantities we need for determining γ , q and λ at different pressures are the bulk modulus and its pressure derivatives up to third order. For this purpose we use two different equations of State. The equations of State used in the present study are given below

(a) Stacey reciprocal K-primed EOS¹⁸

$$\ln\left(\frac{V}{V_0}\right) = \frac{K'_0}{{K'_\infty}^2} \ln\left(1 - K'_\infty \frac{P}{K}\right) + \left(\frac{K'_0}{K'_\infty} - 1\right) \frac{P}{K}$$
(12)

The expression for bulk modulus K and higher order pressure derivatives of bulk modulus can be obtained by successive differentiation of eq. (12) which are given below:

$$K = K_0 \left[1 - \frac{K'_{\infty} P}{K} \right]^{-K'_0/K'_{\infty}}$$
(13)

$$\frac{1}{K'} = \frac{1}{K'_0} + \left(1 - \frac{K'_\infty}{K'_0}\right) \frac{P}{K}$$
(14)

$$KK'' = \frac{{K'}^2}{K'_0} \left(K'_\infty - K' \right) = {K'}^2 + \left(1 - \frac{K'_\infty}{K'_0} \right) \left(1 - \frac{P}{K} K' \right)$$
(15)

$$K^{2}K''' = \frac{K'^{3}}{K_{0}^{\prime 2}} (3K' - 2K'_{\infty} + K'_{0}) (K' - K'_{\infty}) = \frac{KK'K''}{K'_{0}} (2K'_{\infty} - K'_{0} - 3K')$$
(16)

$$\left(\frac{K^2 K''}{KK''}\right)_{\infty} = -K'_{\infty} - \frac{{K'_{\infty}}^2}{K'_0}$$
(17)

(b) Kushwah logarithmic EOS¹⁹

$$Px^{K_{\infty}} = B_1 \ln(2-x) + B_2 [\ln(2-x)]^2 + B_3 [\ln(2-x)]^3$$
(18)

where

$$B_1 = K_0, \qquad B_2 = \frac{K_0}{2} \left(K'_0 - 2K'_{\infty} + 2 \right)$$

and

$$B_{3} = \frac{K_{0}}{6} \left(K_{0} K_{0}'' + K_{0}'^{2} + 3K_{\infty}'^{2} - 3K_{0}' K_{\infty}' - 12K_{\infty}' + 6K_{0}' + 6 \right)$$

The constant B_1 , B_2 and B_3 can be calculated by applying boundary conditions P=0, V=V₀. The expressions for bulk modulus K and higher order pressure derivatives of bulk modulus can be obtained by successive differentiation of eq. (18) which are given below:

$$K = K'_{\infty}P - \frac{x^{1-K'_{\infty}}}{(2-x)} \Big[B_1 + 2B_2 \ln(2-x) + 3B_3 \{ \ln(2-x) \}^2 \Big]$$
(19)

$$K' = 2K'_{\infty} - \frac{{K'_{\infty}}^2 P}{K} + \frac{2}{2-x} \left[+ \frac{K'_{\infty} P}{K} + \frac{x^{2-K'_{\infty}}}{K(2-x)} \left[B_2 + 3B_3 \ln(2-x) \right] - 1 \right]$$
(20)

$$KK'' = -3K'_{\infty}{}^{2} - K'^{2} + 3K'K'_{\infty} + \frac{K'_{\infty}P}{K} \left[K'_{\infty}{}^{2} - \frac{6K'_{\infty}}{(2-x)} + \frac{2(4-x)}{(2-x)^{2}} \right] + \frac{2}{(2-x)} \left[6K'_{\infty}{}^{\prime} - 3K' - \frac{(4-x)}{(2-x)} \right] + \frac{6B_{3}x^{3-K'_{\infty}}}{K(2-x)^{3}}$$
(21)

$$K^{2}K''' = 3KK' \left[K_{\infty}' - K' \frac{2}{(2-x)} \right] + K_{\infty}' \left(1 - \frac{PK'}{K} \right) \left[K_{\infty}'^{2} \frac{6K_{\infty}'}{(2-x)} + \frac{2(4-x)}{(2-x)^{2}} \right] + \frac{2K_{\infty}'Px}{K(2-x)} \left[3K_{\infty}' - \frac{(6-x)}{(2-x)} \right] - \frac{2x}{(2-x)^{2}} \left[6K_{\infty}' - 3K' - \frac{(6-x)}{(2-x)} \right] + \frac{6B_{3}x^{3-K_{\infty}'}}{K(2-x)^{3}} \left[K_{\infty}' - K' - \frac{6}{(2-x)} \right]$$
(22)

$$\left(\frac{K^2 K'''}{KK''}\right)_{\infty} = -K'_{\infty} - 1$$

In Stacey and Kushwah logarithmic EOS, values of K'_{∞} are substantially higher than 5/3. These both equations yield almost identical results. We compare the results γ , q and λ determine from the Stacey EOS with Kushwah logarithmic EOS.

We have thus studied the Grüneisen gamma and its higher order derivatives q and λ . These thermo-elastic parameters are directly related to the pressure derivatives of bulk modulus up to third order. The expressions based on the Stacey EOS and the Kushwah logarithmic EOS satisfy the infinite pressure conditions viz $K' \rightarrow K'_{\infty}$, $KK'' \rightarrow 0$, $K^2 K''' \rightarrow 0$ and the ratio $(K^2 K''' / KK'')_{\infty}$ is finite⁷ for both the EOS under study.

We make use of these equations to calculate the values of γ , q and λ at different values of compressions. The fundamental relationship between thermal pressure and thermal energy and therefore it is applicable for metals.

RESULTS AND DISCUSSION

Values of input parameters used in the present calculations are given in Table 1 (Rai et al., 2010 and Karbasi et al., 2011).

Table 1. Values of input for different metals at room temperature and zero pressure (Rai et al., 2010 and Karbasi et al., 2011)

Metals	Pt	Fe	V	Nb
K_0	276.1	171.11	162.0	168.0
K'_0	5.30	7.79	3.50	3.30
K'_{∞}	3.18	4.67	2.10	1.98
$K_0 K_0''$	-11.24	-24.27	-4.90	-4.36

 Table 2. Values of pressure P, bulk modulus K, pressure derivatives of bulk modulus K', KK" and K²K^m for the different metals calculated from (a) Stacey EOS, (b) Kushwah logarithmic EOS

Metals	V/V_0	Р		K		<i>K</i> ′		KK"		<i>K</i> ² <i>K</i> '''	
		(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)
	1.00	0.00	0.00	277.00	277.00	5.61	5.61	-12.59	-12.59	197.75	191.07
	0.95	16.39	16.38	364.20	364.14	5.09	5.09	-8.00	-8.04	102.99	105.15
	0.90	38.95	38.96	474.71	474.66	4.73	4.73	-5.49	-5.41	60.67	62.10
	0.85	70.00	70.03	617.29	617.36	4.47	4.47	-3.94	-3.79	38.64	38.76
	0.80	112.90	112.93	804.31	804.80	4.26	4.28	-2.92	-2.75	25.93	25.31
Pt	0.75	172.56	172.64	1053.5	1055.4	4.10	4.12	-2.21	-2.05	18.06	17.16
	0.70	256.47	256.75	1391.6	1396.9	3.96	4.00	-1.69	-1.56	12.91	12.01
	0.65	376.06	377.10	1859.0	1872.2	3.85	3.90	-1.31	-1.20	9.40	8.63
	0.60	550.11	552.79	2521.8	2549.9	3.76	3.81	-1.01	-0.94	6.92	6.32
	0.55	809.40	815.64	3487.4	3543.2	3.68	3.74	-0.78	-0.74	5.12	4.70
	0.50	1207.3	1221.0	4940.9	5048.0	3.62	3.68	-0.60	-0.58	3.79	3.53
	1.00	0.00	0.00	183.00	183.00	5.28	5.28	-11.15	-11.15	164.86	161.68
	0.95	10.73	10.73	236.90	236.90	4.82	4.82	-7.26	-7.24	88.81	90.75
	0.90	25.31	25.31	304.54	304.56	4.49	4.50	-5.06	-4.93	53.42	54.36
	0.85	45.10	45.11	390.77	390.98	4.24	4.26	-3.68	-3.49	34.52	34.30
	0.80	72.06	72.09	502.38	503.23	4.05	4.08	-2.75	-2.55	23.43	22.60
Fe	0.75	109.05	109.18	649.15	651.55	3.90	3.93	-2.10	-1.92	16.47	15.45
	0.70	160.35	160.75	845.53	851.18	3.77	3.82	-1.62	-1.47	11.86	10.90
	0.65	232.53	233.56	1113.4	1125.3	3.66	3.72	-1.26	-1.15	8.70	7.89
	0.60	335.97	338.37	1487.4	1510.7	3.57	3.64	-0.98	-0.91	6.44	5.84
	0.55	487.59	492.84	2023.1	2067.1	3.50	3.57	-0.77	-0.72	4.80	4.38
	0.50	716.19	727.27	2814.9	2896.2	3.43	3.51	-0.60	-0.57	3.58	3.32
	1.00	0.00	0.00	162.00	162.00	3.50	3.50	-4.90	-4.90	48.02	48.74
	0.95	9.07	9.08	192.70	192.73	3.28	3.28	-3.65	-3.60	31.30	31.96
	0.90	20.47	20.47	229.07	229.09	3.12	3.12	-2.79	-2.72	21.44	21.68
	0.85	34.76	34.70	272.45	272.63	2.98	2.98	-2.19	-2.10	15.26	15.14
	0.80	52.83	52.88	342.96	325.43	2.87	2.87	-1.74	-1.65	11.16	10.85
V	0.75	75.84	75.92	389.31	390.32	2.77	2.77	-1.40	-1.32	8.33	7.95
	0.70	105.37	105.56	469.17	471.18	2.69	2.69	-1.14	-1.06	6.32	5.94
	0.65	143.77	144.17	569.85	573.55	2.62	2.62	-0.93	-0.87	4.85	4.52
	0.60	197.44	195.19	699.07	705.44	2.56	2.56	-0.76	-0.72	3.75	3.48
	0.55	262.31	263.87	867.88	878.85	2.50	2.50	-0.62	-0.59	2.91	2.71
	0.50	355.46	358.36	1094.3	1112.4	2.45	2.45	-0.51	-0.49	2.27	2.13
	1.00	0.00	0.00	168.80	168.80	3.30	3.30	-4.36	-4.36	40.25	40.18
	0.95	9.43	9.42	198.93	198.89	3.11	3.11	-3.29	-3.28	26.81	27.22
	0.90	21.11	21.11	234.22	234.24	2.95	2.95	-2.55	-2.52	18.69	18.96
	0.85	35.69	35.67	276.21	276.22	2.82	2.82	-2.02	-1.97	13.46	13.52
	0.80	53.89	53.92	326.47	326.70	2.72	2.72	-1.62	-1.56	9.95	9.85
Nb	0.75	76.88	76.94	387.62	388.15	2.63	2.63	-1.32	-1.26	7.50	7.30
	0.70	106.17	106.27	462.92	463.99	2.55	2.55	-1.08	-1.02	5.73	5.50
	0.65	143.87	144.08	556.97	558.99	2.48	2.48	-0.88	-0.84	4.42	4.21
	0.60	193.08	193.53	676.41	680.04	2.42	2.42	-0.73	-0.69	3.44	3.25
	0.55	258.46	259.33	831.12	837.34	2.37	2.37	-0.60	-0.57	2.69	2.53
	0.50	347.10	348.77	1036.1	1046.5	2.32	2.32	-0.49	-0.47	2.10	1.99

Metals	V/V_0	γ		q		λ		
		(a)	(b)	(a)	(b)	(a)	(b)	_
	1.00	2.63	2.63	2.38	2.38	7.72	7.19	
	0.95	2.37	2.37	1.67	1.68	6.10	6.30	
	0.90	2.20	2.20	1.24	1.22	5.08	5.52	
Pt	0.85	2.07	2.07	0.95	0.91	4.38	4.83	
	0.80	1.96	1.97	0.74	0.69	3.88	4.24	
	0.75	1.88	1.89	0.58	0.54	3.49	3.73	
	0.70	1.82	1.83	0.46	0.42	3.20	3.30	
	0.65	1.76	1.78	0.37	0.33	2.96	2.95	
	0.60	1.72	1.74	0.29	0.27	2.77	2.66	
	0.55	1.68	1.71	0.23	0.21	2.62	2.43	
	0.50	1.64	1.67	0.18	0.17	2.49	2.23	
	1.00	3.06	3.06	2.56	2.56	12.22	8.38	
	0.95	2.77	2.75	1.49	1.70	9.20	7.50	
	0.90	2.60	2.55	0.95	1.16	7.52	6.74	
	0.85	2.48	2.41	0.64	0.80	6.43	6.06	
	0.80	2.40	2.31	0.44	0.57	5.66	5.46	
Fe	0.75	2.35	2.24	0.31	0.41	5.08	4.92	
	0.70	2.30	2.19	0.23	0.29	4.63	4.47	
	0.65	2.27	2.15	0.16	0.21	4.26	4.12	
	0.60	2.25	2.12	0.12	0.16	3.96	3.89	
	0.55	2.23	2.09	0.08	0.11	3.71	3.80	
	0.50	2.21	2.07	0.06	0.08	3.50	3.91	
	1.00	1.39	1.39	1.32	1.32	5.12	5.32	
	0.95	1.30	1.30	1.04	1.02	4.40	4.83	
	0.90	1.24	1.24	0.83	0.80	3.86	4.35	
	0.85	1.19	1.19	0.68	0.63	3.45	3.89	
	0.80	1.15	1.15	0.55	0.50	3.11	3.45	
V	0.75	1.11	1.12	0.46	0.41	2.84	3.05	
	0.70	1.08	1.09	0.38	0.34	2.61	2.69	
	0.65	1.05	1.07	0.31	0.28	2.42	2.37	
	0.60	1.03	1.05	0.26	0.23	2.25	2.10	
	0.55	1.01	1.03	0.22	0.20	2.10	1.87	
	0.50	0.99	1.01	0.18	0.17	1.97	1.68	
	1.00	1.54	1.54	1.53	1.53	4.42	4.40	
	0.95	1.43	1.43	1.24	1.24	3.81	3.96	
	0.90	1.35	1.35	1.03	1.01	3.35	3.56	
	0.85	1.28	1.28	0.86	0.83	2.99	3.20	
	0.80	1.22	1.22	0.72	0.69	2.71	2.88	
Nb	0.75	1.17	1.17	0.61	0.58	2.48	2.60	
	0.70	1.12	1.13	0.52	0.49	2.28	2.35	
	0.65	1.08	1.09	0.44	0.42	2.12	2.14	
	0.60	1.05	1.06	0.37	0.35	1.98	1.96	
	0.55	1.02	1.03	0.32	0.30	1.86	1.80	
	0.50	0.99	1.00	0.27	0.25	1.75	1.66	

Conclusion

The results for metals Pt, Fe, V and Nb for the calculation of Grüneisen parameter γ and its volume derivatives (q and λ) are identical from both the equations.

Acknowledgment

We are grateful to UGC, New Delhi for the financial assistance.

REFERENCES

Anderson, O.L., 1995. "Equation of state of solids for Geophysics and ceramic sciences": New York, Oxford University Press.
Speziale, S., Zha, C.S., Duffy, T.S., Hemley, R.J. and Mao, H.K., 2001. J. Geophys. Res. 106 B, 515.
Dorogokupets, P.I. and Dewaele, A., 2007. High Pressure Research 27, 431.
Dorogokupets, P.I. and Oganov, A.R., 2007. Phys. Rev. B 75, 24115, 16PP.
Stacey, F.D. and Davis, P.M., 2004. *Phys. Earth Planet. Inter.* 142 (2004) 137.
Stacey, F.D., 2005. *Rep. Prog. Phys.* 68 341.
Kushwah, S.S., Sharma, M.P. and Tomar, Y.S., 2003. *Physica B* 339 193.
Shanker, J., Dulari, P. and Singh, P.K., 2009. *Physica B* 40 4083.
Kushwah, S.S. and Bhardwaj, N.K., 2010. *Int. J. of Modern Physics B* 24 187-1200.
Shanker, J. and Singh, B.P., 2005. *Physica B* 370 78.
Shanker, J., Singh, B.P. and Jitender, K., 2009. *Condensed Matter Phys.* 12 205.

International Journal of Recent Advances in Multidisciplinary Research

Rai, H.K., Shukla, S.P., Mishra, A.K. and Pandey, A.K., 2010. J. Chem. Pharm. 2(4) 343-356.

- Vashchenko, V.Ya. and Zubarev, V.N., 1963. Sov. Phy. Solid State 5 653.
- Stacey, F.D., 2000. Geophys. J. Int. 143 621.
- Kushwah, S.S., Shrivastava, H.C. and Singh, K.S., 2007. Physica B 388 20-25.
- Shrivastava, H.C., 2009. Physica B 404 251-254.
- Holzapfel, W.B., Hartwig, M. and Sievers, W., 2001. J. Phys. Chem. Ref. Data 30 515.
- Stacey, F.D., 1995. Phys. Earth Planet Inter. 89 219.
- Kushwah, S.S., Shrivastava, H.C. and Singh, K.S., 2004. Physica B 388 2.
- Karbasi, A., Saxena, S.K. and Hrubiak, R., 2011. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 35 72-81.
